Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Environ Sci Technol ; 54(1): 306-315, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31657908

RESUMO

Robust environmental assessments and contaminant monitoring in Antarctic near-shore marine environments need new techniques to overcome challenges presented by a highly dynamic environment. This study outlines an approach for contaminant monitoring and risk assessment in Antarctic marine conditions using diffusive gradients in thin-films (DGT) coupled to regionally specific ecotoxicology data and environmental quality standards. This is demonstrated in a field study where DGT samplers were deployed in the near-shore marine environment of East Antarctica around the operational Casey station and the abandoned Wilkes station to measure the time-averaged biologically available fraction of metal contaminants. The incorporation of DGT-labile concentrations to reference toxicity mixture models for three Antarctic organisms predicted low toxic effects (<5% effect to the growth or development of each organism). The comparison of metal concentrations to the Australian and New Zealand default water quality guideline values (WQGVs) showed no marine site exceeding the WQGVs for 95% species protection. However, all sites exceeded the 99% WQGVs due to copper concentrations that are likely of geogenic origin (i.e., not from anthropogenic sources). This study provides evidence supporting the use of the DGT technique to monitor contaminants and assess their environmental risk in the near-shore marine environment of Antarctica.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Regiões Antárticas , Austrália , Metais , Nova Zelândia
2.
Environ Sci Technol ; 50(16): 8827-39, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27437565

RESUMO

Metal toxicity to aquatic organisms depends on the speciation of the metal and its binding to the critical receptor site(s) (biotic ligand) of the organism. The intracellular nature of the biotic ligand for Cu in microalgal cells was investigated using the high elemental sensitivity of microprobe synchrotron radiation X-ray fluorescence (SR-XRF) and X-ray absorption near-edge spectroscopy (XANES). The marine microalgae, Ceratoneis closterium, Phaeodactylum tricornutum, and Tetraselmis sp. were selected based on their varying sensitivities to Cu (72-h 50% population growth inhibitions of 8-47 µg Cu/L). Intracellular Cu in control cells was similar for all three species (2.5-3.2 × 10(-15) g Cu/cell) and increased 4-fold in C. closterium and Tetraselmis sp. when exposed to copper, but was unchanged in P. tricornutum (72-h exposure to 19, 40, and 40 µg Cu/L, respectively). Whole cell microprobe SR-XRF identified endogenous Cu in the central compartment (cytoplasm) of control (unexposed) cells. After Cu exposure, Cu was colocated with organelles/granules dense in P, S, Ca, and Si and this was clearly evident in thin sections of Tetraselmis sp. XANES indicated coexistence of Cu(I) and Cu(II) in control and Cu-exposed cells, with the Cu ligand (e.g., phytochelatin) in P. tricornutum different from that in C. closterium and Tetraselmis sp. This study supports the hypothesis that Cu(II) is reduced to Cu(I) and that polyphosphate bodies and phytochelatins play a significant role in the internalization and detoxification of Cu in marine microalgae.


Assuntos
Cobre/química , Microalgas , Diatomáceas , Síncrotrons , Raios X
3.
Integr Environ Assess Manag ; 20(2): 498-517, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37466036

RESUMO

Produced water (PW) generated by Australian offshore oil and gas activities is typically discharged to the ocean after treatment. These complex mixtures of organic and inorganic compounds can pose significant environmental risk to receiving waters, if not managed appropriately. Oil and gas operators in Australia are required to demonstrate that environmental impacts of their activity are managed to levels that are as low as reasonably practicable, for example, through risk assessments comparing predicted no-effect concentrations (PNECs) with predicted environmental concentrations of PW. Probabilistic species sensitivity distribution (SSD) approaches are increasingly being used to derive PW PNECs and subsequently calculating dilutions of PW (termed "safe" dilutions) required to protect a nominated percentage of species in the receiving environment (e.g., 95% and 99% or PC95 and PC99, respectively). Limitations associated with SSDs include fitting a single model to small (six to eight species) data sets, resulting in large uncertainty (very wide 95% confidence limits) in the region associated with PC99 and PC95 results. Recent advances in SSD methodology, in the form of model averaging, claim to overcome some of these limitations by applying the average model fit of multiple models to a data set. We assessed the advantages and limitations of four different SSD software packages for determining PNECs for five PWs from a gas and condensate platform off the North West Shelf of Australia. Model averaging reduced occurrences of extreme uncertainty around PC95 and PC99 values compared with single model fitting and was less prone to the derivation of overly conservative PC99 and PC95 values that resulted from lack of fit to single models. Our results support the use of model averaging for improved robustness in derived PNEC and subsequent "safe" dilution values for PW discharge management and risk assessment. In addition, we present and discuss the toxicity of PW considering the paucity of such information in peer-reviewed literature. Integr Environ Assess Manag 2024;20:498-517. © 2023 Commonwealth Scientific and Industrial Research Organisation. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Poluentes Químicos da Água , Água , Austrália , Medição de Risco , Ecotoxicologia , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 953: 175924, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39233086

RESUMO

Sewer overflows are an environmental concern due to their potential to introduce contaminants that can adversely affect downstream aquatic ecosystems. As these overflows can occur during rainfall events, the influence of rainwater ingress from inflow and infiltration on raw untreated wastewater (influent) within the sewer is a critical factor influencing the dilution and toxicity of the contaminants. The Vineyard sewer carrier in the greater city of Sydney, Australia, was selected for an ecotoxicological investigation of a sanitary (separate from stormwater) sewerage system and a wet-weather overflow (WWO). Three influent samples were collected representing dry-weather (DW), intermediate wet-weather (IWW) and wet-weather (WW). In addition, a receiving water sample was also collected downstream in Vineyard Creek (WW-DS) coinciding with a WWO. We employed direct toxicity assessment (DTA) and toxicity identification evaluation (TIE) approaches to gain comprehensive insights into the nature and magnitude of the impact on influent from rainwater ingress into the sewer. Three standard ecotoxicological model species, a microalga, Chlorella vulgaris, the water flea, Ceriodaphnia dubia and the midge larva, Chironomus tepperi were used for both acute and chronic tests. The study revealed variable toxicity responses, with the sample of influent collected in wet-weather displaying lower toxicity compared to the dry-weather sample of influent. Ammonia, and metals, were identified in dry weather as contributors to the observed toxicity, however, this risk was alleviated through rainwater ingress in wet-weather with further dilution within the receiving water. Based on toxicity data, dilutions of influent to minimise effects on C. vulgaris and C. dubia ranged from 1 in 12 in DW to 1 in 2.8 in WW, and further diminished in the receiving water to 1 in 1.8. The successful application of ecotoxicological approaches enabled the assessment of cumulative effects of contaminants in influent, offering valuable insights into the sanitary sewer system under rainwater ingress.


Assuntos
Ecotoxicologia , Monitoramento Ambiental , Chuva , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Animais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Esgotos , Águas Residuárias/toxicidade , Chironomidae , Daphnia , Chlorella vulgaris/efeitos dos fármacos , Testes de Toxicidade
5.
Environ Toxicol Chem ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136622

RESUMO

Barium (Ba) dissolution and mobilization in groundwater are predominantly controlled by sulfate because of the low solubility of barium sulfate (BaSO4) minerals. Naturally present at low concentrations in groundwater, elevated concentrations of Ba can occur as a result of anthropogenic activities, including use of barite in drill operations, and geogenic sources such as leaching from geological formations. No toxicity data exist for Ba with groundwater organisms (stygofauna) to assess the risk of elevated Ba concentrations. The present study measured Ba toxicity to two stygobiont Cyclopoida species: one collected from Wellington and the other from Somersby, New South Wales, Australia. Toxicity was measured as cyclopoid survival over 2, 4, 7, 14, 21, and 28 days in waters of varying sulfate concentration (<1-100 mg SO4/L). When sulfate was present, dissolved Ba concentrations decreased rapidly in toxicity test solutions forming a BaSO4 precipitate until dissolved sulfate was depleted. Barium in excess of sulfate remained in the dissolved form. The toxicity of Ba to cyclopoids was clearly attributed to dissolved Ba. Precipitated Ba was not toxic to the Wellington cyclopoid species. Toxicity values for dissolved Ba for the Wellington and Somersby cyclopoid species included a (21-day) no-effect concentration of 3.3 mg/L and an effective concentration to cause 5% mortality of 4.8 mg/L (at 21 days). Elevated dissolved Ba concentrations due to anthropogenic and/or biogeochemical processes may pose a risk to groundwater organisms. Further toxicity testing with other stygobiont species is recommended to increase the data available to derive a guideline value for Ba that can be used in contaminant risk assessments for groundwaters. Environ Toxicol Chem 2024;00:1-14. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

6.
Environ Toxicol Chem ; 42(4): 901-913, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36896707

RESUMO

Microalgae are key components of aquatic food chains and are known to be sensitive to a range of contaminants. Much of the available data on metal toxicity to microalgae have been derived from temperate single-species tests with temperate data used to supplement tropical toxicity data sets to derive guideline values. In the present study, we used single-species and multispecies tests to investigate the toxicity of nickel and copper to tropical freshwater and marine microalgae, including the free-swimming stage of Symbiodinium sp., a worldwide coral endosymbiont. Based on the 10% effect concentration (EC10) for growth rate, copper was two to four times more toxic than nickel to all species tested. The temperate strain of Ceratoneis closterium was eight to 10 times more sensitive to nickel than the two tropical strains. Freshwater Monoraphidium arcuatum was less sensitive to copper and nickel in the multispecies tests compared with the single-species tests (EC10 values increasing from 0.45 to 1.4 µg Cu/L and from 62 to 330 µg Ni/L). The Symbiodinium sp. was sensitive to copper (EC10 of 3.1 µg Cu/L) and less sensitive to nickel (EC50 >1600 µg Ni/L). This is an important contribution of data on the chronic toxicity of nickel to Symbiodinium sp. A key result from the present study was that three microalgal species had EC10 values below the current copper water quality guideline value for 95% species protection in slightly to moderately disturbed systems in Australia and New Zealand, indicating that they may not be adequately protected by the current copper guideline value. By contrast, toxicity of nickel to microalgae is unlikely to occur at exposure concentrations typically found in fresh and marine waters. Environ Toxicol Chem 2023;42:901-913. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Microalgas , Poluentes Químicos da Água , Níquel/toxicidade , Níquel/análise , Cobre/toxicidade , Água Doce , Qualidade da Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
7.
Environ Toxicol Chem ; 42(6): 1409-1419, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37042563

RESUMO

Anthropogenic activities in Antarctica have led to contamination of terrestrial sites, and soils in ice-free areas have elevated concentrations of metals, particularly around current and historic research stations. Effective management of Antarctic contaminated sites depends on the assessment of risks to a representative range of native terrestrial species. Bdelloid rotifers are an abundant and biodiverse component of Antarctic limnoterrestrial communities and play a key role in nutrient cycling in Antarctic ecosystems. The present study investigates the toxicity of five metals (cadmium, copper, nickel, lead, and zinc) to the endemic bdelloid rotifer Adineta editae, both singly and in metal mixtures. Based on the concentrations tested, zinc was the most toxic metal to survival with a 7-day median lethal concentration (LC50) of 344 µg Zn/L, followed by cadmium with a 7-day LC50 of 1542 µg Cd/L. Rotifers showed high sensitivity using cryptobiosis (chemobiosis) as a sublethal behavioral endpoint. Chemobiosis was triggered in A. editae at low metal concentrations (e.g., 6 µg/L Pb) and is likely a protective mechanism and survival strategy to minimize exposure to stressful conditions. Lead and copper were most toxic to rotifer behavior, with 4-day median effect concentrations (EC50s) of 18 and 27 µg/L, respectively, followed by zinc and cadmium (4-day EC50 values of 52 and 245 µg/L, respectively). The response of rotifers to the metal mixtures was antagonistic, with less toxicity observed than was predicted by the model developed from the single-metal exposure data. The present study provides evidence that this bdelloid rotifer represents a relatively sensitive microinvertebrate species to metals and is recommended for use in contaminant risk assessments in Antarctica. Environ Toxicol Chem 2023;42:1409-1419. © 2023 SETAC.


Assuntos
Cobre , Poluentes Químicos da Água , Cobre/toxicidade , Cádmio/toxicidade , Regiões Antárticas , Ecossistema , Poluentes Químicos da Água/toxicidade , Metais/toxicidade , Zinco/toxicidade
8.
Mar Pollut Bull ; 194(Pt B): 115242, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453169

RESUMO

Adult corals are among the most sensitive marine organisms to dissolved manganese and experience tissue sloughing without bleaching (i.e., no loss of Symbiodinium spp.) but there are no chronic toxicity data for this sensitive endpoint. We exposed adult Acropora millepora to manganese in 2-d acute and 14-d chronic experiments using tissue sloughing as the toxicity endpoint. The acute tissue sloughing median effect concentration (EC50) was 2560 µg Mn/L. There was no chronic toxicity to A. millepora at concentrations up to and including the highest concentration of 1090 µg Mn/L i.e., the chronic no observed effect concentration (NOEC). A coral-specific acute-to-chronic ratio (ACR) (EC50/NOEC) of 2.3 was derived. These data were combined with chronic toxicity data for other marine organisms in a species sensitivity distribution (SSD). Marine manganese guidelines were 190, 300, 390 and 570 µg Mn/L to provide long-term protection of 99, 95, 90, and 80 % of marine species, respectively.


Assuntos
Antozoários , Dinoflagellida , Poluentes Químicos da Água , Animais , Manganês/toxicidade , Qualidade da Água , Organismos Aquáticos , Poluentes Químicos da Água/toxicidade
9.
Sci Total Environ ; 845: 157311, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839877

RESUMO

Deep-sea tailings placement (DSTP) involves the oceanic discharge of tailings at depth (usually >100 m), with the intent of ultimate deposition of tailings solids on the deep-sea bed (>1000 m), well below the euphotic zone. DSTP discharges consist of a slurry of mine tailings solids (finely crushed rock) and residual process liquor containing low concentrations of metals, metalloids, flotation agents and flocculants. This slurry can potentially affect both pelagic and benthic biota inhabiting coastal waters, the continental slope and the deep-sea bed. Building on a conceptual model of DSTP exposure pathways and receptors, we developed a stressor-driven environmental risk assessment (ERA) framework using causal pathways/causal networks for each of eight pelagic and benthic impact zones. For the risk characterisation, each link in each causal pathway in each zone was scored using four levels of likelihood (not possible, possible, likely and certain) and two levels of consequence (not material, material) to give final risk rankings of low, potential, high or very high risk. Of the 246 individual causal pathways scored, 11 and 18 pathways were considered to be of very high risk and high risk respectively. These were confined to the benthic zones in the mixing zone (continental slope) and the primary and secondary deposition zones. The new risk framework was then tested using a case study of the Batu Hijau copper mine in Indonesia, the largest DSTP operation globally. The major risk of DSTP is smothering of benthic biota, even outside the predicted deposition zones. Timescales for recovery are slow and may lead to different communities than those that existed prior to tailings deposition. We make several recommendations for monitoring programs for existing, proposed and legacy DSTP operations and illustrate how georeferenced causal networks are valuable tools for ERA in DSTP.


Assuntos
Sedimentos Geológicos , Mineração , Monitoramento Ambiental , Metais/análise , Oceanos e Mares , Medição de Risco
10.
Environ Toxicol Chem ; 41(10): 2580-2594, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35856873

RESUMO

Following an oil spill, accurate assessments of the ecological risks of exposure to compounds within petroleum are required, as is knowledge regarding how those risks may change with the use of chemical dispersants. Laboratory toxicity tests are frequently used to assess these risks, but differences in the methods for preparation of oil-in-water solutions may confound interpretation, as may differences in exposure time to those solutions. In the present study, we used recently developed modifications of standardized ecotoxicity tests with copepods (Acartia sinjiensis), sea urchins (Heliocidaris tuberculata), and fish embryos (Seriola lalandi) to assess their response to crude oil solutions and assessed whether the oil-in-water preparation method changed the results. We created a water-accommodated fraction, a chemically enhanced water-accommodated fraction, and a high-energy water-accommodated fraction (HEWAF) using standard approaches using two different dispersants, Corexit 9500 and Slickgone NS. We found that toxicity was best related to total polycyclic aromatic hydrocarbon (TPAH) concentrations in solution, regardless of the preparation method used, and that the HEWAF was the most toxic because it dispersed the highest quantity of oil into solution. The TPAH composition in water did not vary appreciably with different preparation methods. For copepods and sea urchins, we also found that at least some of the toxic response could be attributed to the chemical oil dispersant. We did not observe the characteristic cardiac deformities that have been previously reported in fish embryos, most likely due to the use of unweathered oil, and, as a consequence, the high proportion of naphthalenes relative to cardiotoxic polycyclic aromatic hydrocarbon in the overall composition. The present study highlights the need to characterize both the TPAH composition and concentration in test solutions when assessing oil toxicity. Environ Toxicol Chem 2022;41:2580-2594. © 2022 SETAC.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Naftalenos , Petróleo/análise , Petróleo/toxicidade , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Ouriços-do-Mar , Água/química , Poluentes Químicos da Água/análise
11.
J Hazard Mater ; 428: 128219, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35114525

RESUMO

The potential environmental risk associated with flowback waters generated during hydraulic fracturing of target shale gas formations needs to be assessed to enable management decisions and actions that prevent adverse impacts on aquatic ecosystems. Using direct toxicity assessment (DTA), we determined that the shale gas flowback wastewater (FWW) from two exploration wells (Tanumbirini-1 and Kyalla 117 N2) in the Beetaloo Sub-basin, Northern Territory, Australia were chronically toxic to eight freshwater biota. Salinity in the respective FWWs contributed 16% and 55% of the chronic toxicity at the 50% effect level. The remaining toxicity was attributed to unidentified chemicals and interactive effects from the mixture of identified organics, inorganics and radionuclides. The most sensitive chronic endpoints were the snail (Physa acuta) embryo development (0.08-1.1% EC10), microalga (Chlorella sp. 12) growth rate inhibition (0.23-3.7% EC10) and water flea (Ceriodaphnia cf. dubia) reproduction (0.38-4.9% EC10). No effect and 10% effect concentrations from the DTA were used in a species sensitivity distribution to derive "safe" dilutions of 1 in 300 and 1 in 1140 for the two FWWs. These dilutions would provide site-specific long-term protection to 95% of aquatic biota in the unlikely event of an accidental spill or seepage.


Assuntos
Chlorella , Fraturamento Hidráulico , Poluentes Químicos da Água , Ecossistema , Água Doce , Gás Natural , Campos de Petróleo e Gás , Salinidade , Águas Residuárias , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
12.
Sci Total Environ ; 810: 151219, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34748835

RESUMO

The Ok Tedi mine discharges waste rock and tailings into the Ok Tedi River in Papua New Guinea. This has resulted in elevated copper concentrations throughout the Ok Tedi/Fly River system, which can potentially impact aquatic biota. Ten years of measured copper and toxicity monitoring data were used to assess the risk of chronic effects from the mine-derived copper. Cumulative probability plots of dissolved and labile copper were compared to a species sensitivity distribution (SSD) of published copper toxicity data for four regions of the river. The Cu-SSD was used to estimate the risk of chronic effects to aquatic organisms in the Ok Tedi/Fly River at a range of potential copper exposure scenarios. The risk to species at the median labile copper concentration for each region showed a gradient effect with distance downstream from the mine and only the most sensitive (0.2-11%) species were at risk. There were copper exceedances of the region-specific guideline values (GV) and default guideline value (DGV) 88% and 74% of the time, respectively, in the Ok Tedi region (closest to the mine) and this is considered a high risk of chronic effects. Measured copper concentrations in the middle Fly River, lower Fly River (farthest downstream of the mine) and the river at Kiunga (reference site) exceeded the region-specific GVs and DGVs less frequently to rarely and present a lower risk of chronic effects from copper. The risk was supported using toxicity tests with the local microalgal species Chlorella sp. Comparison of recent (2010-2020) and historical (1996-2004) copper monitoring data from the Ok Tedi/Fly River indicates a decrease in the labile copper concentrations (30-76%) at key sites from impacted regions and a subsequent decrease in risk. This coincides with improved mining practices aimed at reducing the copper load into the Ok Tedi/Fly River.


Assuntos
Chlorella , Poluentes Químicos da Água , Cobre/toxicidade , Papua Nova Guiné , Medição de Risco , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
13.
Environ Toxicol Chem ; 40(5): 1341-1352, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33465249

RESUMO

The current Australian and New Zealand default guideline value of 3 µg Cl/L for total residual chlorine in freshwaters is largely based on acute data converted to chronic data using a default acute to chronic ratio of 10, without consideration of chlorine decomposition. Given the rapid decomposition of chlorine, initially as hypochlorite and then as chloramine, it is appropriate to consider a guideline value based on short-term (acute) toxicity rather than one based on longer-term chronic data, as has been recommended for chlorine in marine waters. The literature on the fate of chlorine in drinking water discharged to freshwaters and on the ecotoxicity of total residual chlorine has been reviewed, and on the basis of this, revised default guideline values were derived for both hypochlorite and chloramine in freshwater using a species sensitivity distribution of toxicity data. The values for 95% species protection were 7 and 9 µg Cl/L as total residual chlorine, respectively. The former would apply to any total residual chlorine-containing effluent, but in the case of drinking water where dechlorination has been undertaken, the chloramine-based default guideline value is likely to be more appropriate. Both are likely to be conservative because they were largely based on toxicity testing under continuous flow-through conditions. They will apply at the edge of the mixing zone, and the variable receiving water concentration at this point might best be determined from a time-weighted average total residual chlorine concentration. Environ Toxicol Chem 2021;40:1341-1352. © 2021 SETAC.


Assuntos
Cloro , Purificação da Água , Austrália , Cloretos , Água Doce , Testes de Toxicidade
14.
Environ Sci Process Impacts ; 23(9): 1362-1375, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34351327

RESUMO

Salinity in the Antarctic nearshore marine environment is seasonally dynamic and climate change is driving greater variability through altered sea ice seasons, ocean evaporation rates, and increased terrestrial ice melt. The greatest salinity changes are likely to occur in the nearshore environment where elevated metal exposures from historical waste or wastewater discharge occur. How salinity changes affect metal toxicity has not yet been investigated. This study investigated the toxicity of cadmium, copper, nickel, lead, and zinc, and their equitoxic mixtures across a salinity gradient to the Antarctic marine microalga Phaeocystis antarctica. In the metal-free control exposures, algal population growth rates were significantly lower at salinities <20 PSU or >35 PSU compared to the control growth rate at 35 PSU of 0.60 ± 0.05 doublings per day and there was no growth below 10 or above 68 PSU. Salinity-induced changes to metal speciation and activity were investigated using the WHAM VII model. Percentages of free ion activity and metal-organic complexes increased at decreasing salinities while the activity of inorganic metal complexes increased with increasing salinities. Despite metal speciation and activity changes, toxicity was generally unchanged across the salinity gradient except that there was less copper toxicity and more lead toxicity than model predictions at salinities of 15 and 25 PSU and antagonistic interactions in metal-mixture treatments. In mixtures with and without copper, it was shown that copper was responsible for ∼50% of the antagonism from observed toxicity at salinities below 45 PSU. Across all treatments, using different metal fractions in toxicity models did not improve toxicity predictions compared to dissolved metal concentrations. These results provide evidence that P. antarctica is unlikely to be at a greater risk from metal contaminants as a result of salinity changes.


Assuntos
Haptófitas , Microalgas , Poluentes Químicos da Água , Chumbo , Salinidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
15.
Chemosphere ; 269: 128675, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33657749

RESUMO

Metal contaminants in Antarctic soils are typically found around research stations which are concentrated in ice-free coastal areas. The risk of these contaminants to the Antarctic environment is not well understood, given Antarctica's unique organisms and climate. This study assessed the use of diffusive gradients in thin-films (DGT), a passive sampler that measures fluxes of labile metals from soils to porewaters, in Antarctic soils. DGT-labile measurements were compared to three chemical extractants of increasing strength including high-purity water, dilute acid (1 M HCl), and concentrated acids (3:1 v/v HNO3:HCl), to understand differences in contaminant geochemistry that may affect environmental risk. One site had high lead concentrations measured with dilute (114 ± 4 mg kg-1) and concentrated (150 ± 10 mg kg-1) acids, while DGT-labile concentrations were below the method detection limit (0.5 µg L-1), indicating that the lead species has low solubility or lability. Another site had low concentrations of zinc measured by dilute (36.2 ± 0.5 mg kg-1) or concentrated (76 ± 6 mg kg-1) acid extracts, but had high DGT-labile concentrations (350 ± 80 µg L-1). This reflects an active source of zinc supplied from soil to pore water over time. Copper was found to be acid extractable, water-soluble, and DGT-labile, with DGT-labile concentrations of up to 12 µg L-1. Despite the soil and metal-specific geochemical differences, any of the extracts could be used with statistical clustering techniques to identify differences in sites with elevated metal concentrations. This study shows that the DGT-method can identify contaminated sites comparably to chemical extracts but provides environmentally relevant measurements of metal contaminant lability in Antarctic soils.


Assuntos
Poluentes do Solo , Solo , Regiões Antárticas , Monitoramento Ambiental , Poluentes do Solo/análise , Zinco/análise
16.
Environ Toxicol Chem ; 40(9): 2587-2600, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34033678

RESUMO

Petroleum hydrocarbons can be discharged into the marine environment during offshore oil and gas production or as a result of oil spills, with potential impacts on marine organisms. Ecotoxicological assay durations (typically 24-96 h) used to characterize risks to exposed organisms may not always reflect realistic environmental exposure durations in a high-energy offshore environment where hydrocarbons are mixed and diluted rapidly in the water column. To investigate this, we adapted 3 sensitive toxicity tests to incorporate a short-term pulse exposure to 3 petroleum-based products: a produced water, the water-accommodated fraction (WAF) of a condensate, and a crude oil WAF. We measured 48-h mobility of the copepod Acartia sinjiensis, 72-h larval development of the sea urchin Heliocidaris tuberculata, and 48-h embryo survival and deformities of yellowtail kingfish Seriola lalandi, after exposure to a dilution series of each of the 3 products for 2, 4 to 12, and 24 h and for the standard duration of each toxicity test (continuous exposure). Effects on copepod survival and sea urchin larval development were significantly reduced in short-term exposures to produced water and WAFs compared to continuous exposures. Fish embryos, however, showed an increased frequency of deformities at elevated concentrations regardless of exposure duration, although there was a trend toward increased severity of deformities with continuous exposure. The results demonstrate how exposure duration alters toxic response and how incorporating relevant exposure duration to contaminants into toxicity testing may aid interpretation of more realistic effects (and hence an additional line of evidence in risk assessment) in the receiving environment. Environ Toxicol Chem 2021;40:2587-2600. © 2021 CSIRO. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Copépodes , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Peixes , Hidrocarbonetos , Petróleo/análise , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Ouriços-do-Mar , Testes de Toxicidade , Água/química , Poluentes Químicos da Água/análise
17.
Environ Pollut ; 287: 117627, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426394

RESUMO

Antarctic melt streams are important ecosystems that increasingly face contaminant pressures from anthropogenic sources. Metal contaminants are often reported in the limno-terrestrial environment but their speciation is not well characterised, making environmental risk assessments difficult. This paper characterises labile metal concentrations in five melt streams and three shallow lakes around the Casey and Wilkes research stations in East Antarctica using chemical extracts and field deployments of diffusive gradients in thin-film (DGT) samplers. An acute toxicity test with field-collected Ceratadon purpeus and taxonomic identification of diatoms in melt streams were used to infer environmental risk. Copper and zinc were the most labile metals in the melt streams. DGT-labile copper concentrations were up to 3 µg Cu L-1 in melt-stream waters but not labile below the sediment-water interface. DGT-labile zinc concentrations were consistent above and below the sediment-water interface at concentrations up to 14 µg Zn L-1 in four streams, but one stream showed evidence of zinc mineralisation in the sediment with a flux to overlying and pore waters attributed to the reductive dissolution of iron and manganese oxides. Other metals, such as chromium, nickel, and lead were acid-extractable from the sediments, but not labile in pore waters or overlying waters. All streams had unique compositions of freshwater diatoms, but one had particularly reduced diversity and richness, which correlated to metal contamination and sediment physico-chemical properties such as a finer particle size. In laboratory bioassays with field-collected samples of the Antarctic moss C. purpeus, there was no change in photosynthetic efficiency following 28-d exposure to 700, 900, 1060, or 530 µg L-1 of cadmium, copper, nickel, and zinc, respectively. This study shows that microorganisms such as diatoms may be at greater risk from contaminants than mosses, and highlights the importance of geochemical factors controlling metal lability.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Regiões Antárticas , Ecossistema , Sedimentos Geológicos , Lagos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
18.
Environ Toxicol Chem ; 40(1): 100-112, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32997805

RESUMO

There has been an increased emphasis on incorporating bioavailability-based approaches into freshwater guideline value derivations for metals in the Australian and New Zealand water quality guidelines. Four bioavailability models were compared: the existing European biotic ligand model (European Union BLM) and a softwater BLM, together with 2 newly developed multiple linear regressions (MLRs)-a trophic level-specific MLR and a pooled MLR. Each of the 4 models was used to normalize a nickel ecotoxicity dataset (combined tropical and temperate data) to an index condition of pH 7.5, 6 mg Ca/L, 4 mg Mg/L, (i.e., approximately 30 mg CaCO3 /L hardness), and 0.5 mg DOC/L. The trophic level-specific MLR outperformed the other 3 models, with 79% of the predicted 10% effect concentration (EC10) values within a factor of 2 of the observed EC10 values. All 4 models gave similar normalized species sensitivity distributions and similar estimates of protective concentrations (PCs). Based on the index condition water chemistry proposed as the basis of the national guideline value, a protective concentration for 95% of species (PC95) of 3 µg Ni/L was derived. This guideline value can be adjusted up and down to account for site-specific water chemistries. Predictions of PC95 values for 20 different typical water chemistries for Australia and New Zealand varied by >40-fold, which confirmed that correction for nickel bioavailability is critical for the derivation of site-specific guideline values. Environ Toxicol Chem 2021;40:100-112. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Níquel , Poluentes Químicos da Água , Austrália , Disponibilidade Biológica , Água Doce , Nova Zelândia
19.
Environ Toxicol Chem ; 40(1): 113-126, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044759

RESUMO

Bioavailability-based approaches have been developed for the regulation of metals in freshwaters in several countries. Empirical multiple linear regression (MLR) models have been developed for nickel that can be applied to aquatic organisms. The MLR models have been compared against the use of previously developed biotic ligand models (BLMs) for the normalization of an ecotoxicity dataset compiled for the derivation of a water quality guideline value that could be applied in Australia and New Zealand. The MLR models were developed from data for a number of specific species and were validated independently to confirm their reliability. An MLR modeling approach using different models for algae, plants, invertebrates, and vertebrates performed better than either a pooled MLR model for all taxa or the BLMs, in terms of its ability to correctly predict the results of the tests in the ecotoxicity database based on their water chemistry and a fitted species-specific sensitivity parameter. The present study demonstrates that MLR approaches can be developed and validated to predict chronic nickel toxicity to freshwater ecosystems from existing datasets. The MLR approaches provide a viable alternative to the use of BLMs for taking account of nickel bioavailability in freshwaters for regulatory purposes. Environ Toxicol Chem 2021;40:113-126. © 2020 SETAC.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Animais , Austrália , Disponibilidade Biológica , Ecossistema , Água Doce , Nova Zelândia , Níquel/toxicidade , Reprodutibilidade dos Testes , Poluentes Químicos da Água/toxicidade
20.
Environ Toxicol Chem ; 40(5): 1266-1278, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33348464

RESUMO

The geographical shift of nickel mining to small island countries of the Southeast Asia and Melanesia region has produced a need to assess the environmental risk associated with increased sediment nickel exposure to benthic estuarine/marine biota. Chemical measurements of nickel concentration and potential bioavailability, including the use of diffusive gradients in thin films (DGT), were compared to effects on 10-d reproduction of the epibenthic estuarine/marine amphipod Melita plumulosa in nickel-spiked sediments and field-contaminated sediments with different characteristics. The 10% effect concentrations (EC10s) for amphipod reproduction ranged from 280 to 690 mg/kg total recoverable nickel, from 110 to 380 mg/kg dilute acid-extractable nickel, and from 34 to 87 µg Ni/m2 /h DGT-labile nickel flux. Nickel bioavailability was lower in sediments with greater total organic carbon, clay content, and percentage of fine particles. Measurements of DGT-labile nickel flux at the sediment-water interface integrated exposure to nickel from porewater, overlying water, and ingested sediment exposure pathways and were found to have the strongest relationship with the biological response. At most, there was a 29% reduction in 10-d M. plumulosa reproduction relative to the control when exposed to nickel from field-contaminated sediments collected from nickel laterite mining regions of New Caledonia. The DGT technique can be used as a complementary tool to measure the bioavailability of nickel in estuarine/marine sediments, especially sediments that are in nickel laterite mining regions where there are no or few toxicity data available for determining biological effects on local species. Based on the combined data set of the 3 nickel-spiked sediments a DGT-labile nickel EC10 threshold of 50 (30-69) µg Ni/m2 /h was determined. Environ Toxicol Chem 2021;40:1266-1278. © 2020 SETAC.


Assuntos
Anfípodes , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Sedimentos Geológicos , Metais/análise , Níquel/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa