Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D1180-D1192, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37933841

RESUMO

ChEMBL (https://www.ebi.ac.uk/chembl/) is a manually curated, high-quality, large-scale, open, FAIR and Global Core Biodata Resource of bioactive molecules with drug-like properties, previously described in the 2012, 2014, 2017 and 2019 Nucleic Acids Research Database Issues. Since its introduction in 2009, ChEMBL's content has changed dramatically in size and diversity of data types. Through incorporation of multiple new datasets from depositors since the 2019 update, ChEMBL now contains slightly more bioactivity data from deposited data vs data extracted from literature. In collaboration with the EUbOPEN consortium, chemical probe data is now regularly deposited into ChEMBL. Release 27 made curated data available for compounds screened for potential anti-SARS-CoV-2 activity from several large-scale drug repurposing screens. In addition, new patent bioactivity data have been added to the latest ChEMBL releases, and various new features have been incorporated, including a Natural Product likeness score, updated flags for Natural Products, a new flag for Chemical Probes, and the initial annotation of the action type for ∼270 000 bioactivity measurements.


Assuntos
Descoberta de Drogas , Bases de Dados Factuais , Fatores de Tempo
2.
Nucleic Acids Res ; 49(W1): W530-W534, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33950214

RESUMO

With the growth of protein structure data, the analysis of molecular interactions between ligands and their target molecules is gaining importance. PLIP, the protein-ligand interaction profiler, detects and visualises these interactions and provides data in formats suitable for further processing. PLIP has proven very successful in applications ranging from the characterisation of docking experiments to the assessment of novel ligand-protein complexes. Besides ligand-protein interactions, interactions with DNA and RNA play a vital role in many applications, such as drugs targeting DNA or RNA-binding proteins. To date, over 7% of all 3D structures in the Protein Data Bank include DNA or RNA. Therefore, we extended PLIP to encompass these important molecules. We demonstrate the power of this extension with examples of a cancer drug binding to a DNA target, and an RNA-protein complex central to a neurological disease. PLIP is available online at https://plip-tool.biotec.tu-dresden.de and as open source code. So far, the engine has served over a million queries and the source code has been downloaded several thousand times.


Assuntos
DNA/química , Proteínas de Ligação a RNA/química , RNA/química , Software , Algoritmos , Antineoplásicos/química , Guanosina Trifosfato/química , Ligantes , Conformação de Ácido Nucleico , Fenazinas/química , Conformação Proteica , RNA Polimerase II/química , Elementos de Resposta
3.
Semin Cancer Biol ; 68: 192-198, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32032699

RESUMO

Drug repositioning, the assignment of new therapeutic purposes to known drugs, is an established strategy with many repurposed drugs on the market and many more at experimental stage. We review three use cases, a herpes drug with benefits in cancer, a cancer drug with potential in autoimmune disease, and a selective and an unspecific drug binding the same target (GPCR). We explore these use cases from a structural point of view focusing on a deep understanding of the underlying drug-target interactions. We review tools and data needed for such a drug-centric structural repositioning approach. Finally, we show that the availability of data on targets is an important limiting factor to realize the full potential of structural drug-repositioning.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antivirais/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Reposicionamento de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Descoberta de Drogas , Humanos
4.
J Chem Inf Model ; 61(5): 2248-2262, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33899463

RESUMO

Pan-assay interference compounds (PAINS) are promiscuous compound classes that produce false positive hits in high-throughput screenings. Yet, the mechanisms of PAINS activity are poorly understood. Although PAINS are often associated with protein reactivity, several recent studies have shown that they also mediate noncovalent interactions. Aiming at a deep understanding of PAINS promiscuity, we performed an analysis of the Protein Data Bank to characterize the binding modes of PAINS. We explored the binding mode conservation of 34 PAINS classes present in 871 ligands and among 517 protein targets. The two major findings of this work are the following: First, different PAINS classes exhibit different levels of binding mode conservation. Our novel classification of PAINS based on binding mode similarity enables a rational assessment of PAINS from a structural perspective. Second, PAINS classes with variable binding modes can bind with high affinity. The evaluation of noncovalent binding modes of PAINS-like compounds sheds light on the mechanisms of promiscuous binding. Our findings could facilitate the decisions on how to deal with PAINS and help scientists to understand why PAINS produce hits in their screenings.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Bases de Dados de Proteínas , Ligantes
5.
FASEB J ; 33(8): 9235-9249, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31145643

RESUMO

Cancer cells can switch between signaling pathways to regulate growth under different conditions. In the tumor microenvironment, this likely helps them evade therapies that target specific pathways. We must identify all possible states and utilize them in drug screening programs. One such state is characterized by expression of the transcription factor Hairy and Enhancer of Split 3 (HES3) and sensitivity to HES3 knockdown, and it can be modeled in vitro. Here, we cultured 3 primary human brain cancer cell lines under 3 different culture conditions that maintain low, medium, and high HES3 expression and characterized gene regulation and mechanical phenotype in these states. We assessed gene expression regulation following HES3 knockdown in the HES3-high conditions. We then employed a commonly used human brain tumor cell line to screen Food and Drug Administration (FDA)-approved compounds that specifically target the HES3-high state. We report that cells from multiple patients behave similarly when placed under distinct culture conditions. We identified 37 FDA-approved compounds that specifically kill cancer cells in the high-HES3-expression conditions. Our work reveals a novel signaling state in cancer, biomarkers, a strategy to identify treatments against it, and a set of putative drugs for potential repurposing.-Poser, S. W., Otto, O., Arps-Forker, C., Ge, Y., Herbig, M., Andree, C., Gruetzmann, K., Adasme, M. F., Stodolak, S., Nikolakopoulou, P., Park, D. M., Mcintyre, A., Lesche, M., Dahl, A., Lennig, P., Bornstein, S. R., Schroeck, E., Klink, B., Leker, R. R., Bickle, M., Chrousos, G. P., Schroeder, M., Cannistraci, C. V., Guck, J., Androutsellis-Theotokis, A. Controlling distinct signaling states in cultured cancer cells provides a new platform for drug discovery.


Assuntos
Glioblastoma/metabolismo , Proteínas Repressoras/metabolismo , Linhagem Celular Tumoral , Descoberta de Drogas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Glioblastoma/genética , Humanos , Interferência de RNA , Proteínas Repressoras/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
6.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233837

RESUMO

Chagas disease, caused by the parasite Trypanosoma cruzi, affects millions of people in South America. The current treatments are limited, have severe side effects, and are only partially effective. Drug repositioning, defined as finding new indications for already approved drugs, has the potential to provide new therapeutic options for Chagas. In this work, we conducted a structure-based drug repositioning approach with over 130,000 3D protein structures to identify drugs that bind therapeutic Chagas targets and thus represent potential new Chagas treatments. The screening yielded over 500 molecules as hits, out of which 38 drugs were prioritized following a rigorous filtering process. About half of the latter were already known to have trypanocidal activity, while the others are novel to Chagas disease. Three of the new drug candidates-ciprofloxacin, naproxen, and folic acid-showed a growth inhibitory activity in the micromolar range when tested ex vivo on T. cruzi trypomastigotes, validating the prediction. We show that our drug repositioning approach is able to pinpoint relevant drug candidates at a fraction of the time and cost of a conventional screening. Furthermore, our results demonstrate the power and potential of structure-based drug repositioning in the context of neglected tropical diseases where the pharmaceutical industry has little financial interest in the development of new drugs.


Assuntos
Doença de Chagas/tratamento farmacológico , Ciprofloxacina , Reposicionamento de Medicamentos , Ácido Fólico , Naproxeno , Tripanossomicidas , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Ciprofloxacina/química , Ciprofloxacina/farmacologia , Ácido Fólico/química , Ácido Fólico/farmacologia , Camundongos , Naproxeno/química , Naproxeno/farmacologia , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/farmacologia
7.
Nucleic Acids Res ; 43(W1): W443-7, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25873628

RESUMO

The characterization of interactions in protein-ligand complexes is essential for research in structural bioinformatics, drug discovery and biology. However, comprehensive tools are not freely available to the research community. Here, we present the protein-ligand interaction profiler (PLIP), a novel web service for fully automated detection and visualization of relevant non-covalent protein-ligand contacts in 3D structures, freely available at projects.biotec.tu-dresden.de/plip-web. The input is either a Protein Data Bank structure, a protein or ligand name, or a custom protein-ligand complex (e.g. from docking). In contrast to other tools, the rule-based PLIP algorithm does not require any structure preparation. It returns a list of detected interactions on single atom level, covering seven interaction types (hydrogen bonds, hydrophobic contacts, pi-stacking, pi-cation interactions, salt bridges, water bridges and halogen bonds). PLIP stands out by offering publication-ready images, PyMOL session files to generate custom images and parsable result files to facilitate successive data processing. The full python source code is available for download on the website. PLIP's command-line mode allows for high-throughput interaction profiling.


Assuntos
Simulação de Acoplamento Molecular/métodos , Conformação Proteica , Software , Algoritmos , Inibidores Enzimáticos/química , Internet , Ligantes , Proteínas/química
8.
J Cheminform ; 14(1): 17, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292113

RESUMO

BACKGROUND: Structure-based drug repositioning has emerged as a promising alternative to conventional drug development. Regardless of the many success stories reported over the past years and the novel breakthroughs on the AI-based system AlphaFold for structure prediction, the availability of structural data for protein-drug complexes remains very limited. Whereas the chemical libraries contain millions of drug compounds, the vast majority of them do not have structures to crystallized targets,and it is, therefore, impossible to characterize their binding to targets from a structural view. However, the concept of building blocks offers a novel perspective on the structural problem. A drug compound is considered a complex of small chemical blocks or fragments, which confer the relevant properties to the drug and have a high proportion of functional groups involved in protein binding. Based on this, we propose a novel approach to expand the scope of structure-based repositioning approaches by transferring the structural knowledge from a fragment to a compound level. RESULTS: We fragmented over 100,000 compounds in the Protein Data Bank (PDB) and characterized the structural binding mode of 153,000 fragments to their crystallized targets. Using the fragment's data, we were able to artificially reconstruct the binding mode of over 7,800 complexes between ChEMBL compounds and their known targets, for which no structural data is available. We proved that the conserved binding tendency of fragments, when binding to the same targets, highly influences the drug's binding specificity and carries the key information to reconstruct full drugs binding mode. Furthermore, our approach was able to reconstruct multiple compound-target pairs at optimal thresholds and high similarity to the actual binding mode. CONCLUSIONS: Such reconstructions are of great value and benefit structure-based drug repositioning since they automatically enlarge the technique's scope and allow exploring the so far 'unexplored compounds' from a structural perspective. In general, the transfer of structural information is a promising technique that could be applied to any chemical library, to any compound that has no crystal structure available in PDB, and even to transfer any other feature that may be relevant for the drug discovery process and that due to data limitations is not yet fully available. In that sense, the results of this work document the full potential of structure-based screening even beyond PDB.

9.
Comput Struct Biotechnol J ; 18: 1043-1055, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32419905

RESUMO

Drug repositioning aims to find new indications for existing drugs in order to reduce drug development cost and time. Currently,there are numerous stories of successful drug repositioning that have been reported and many repurposed drugs are already available on the market. Although drug repositioning is often a product of serendipity, repositioning opportunities can be uncovered systematically. There are three systematic approaches to drug repositioning: disease-centric approach, target-centric and drug-centric. Disease-centric approaches identify close relationships between an old and a new indication. A target-centric approach links a known target and its established drug to a new indication. Lastly, a drug-centric approach connects a known drug to a new target and its associated indication. These three approaches differ in their potential and their limitations, but above all else, in the required start information and computing power. This raises the question of which approach prevails in current drug discovery and what that implies for future developments. To address this question, we systematically evaluated over 100 drugs, 200 target structures and over 300 indications from the Drug Repositioning Database. Each analyzed case was classified as one of the three repositioning approaches. For the majority of cases (more than 60%) the disease-centric definition was assigned. Almost 30% of the cases were classified as target-centric and less than 10% as drug-centric approaches. We concluded that, despite the use of umbrella term "drug" repositioning, disease- and target-centric approaches have dominated the field until now. We propose the use of drug-centric approaches while discussing reasons, such as structure-based repositioning techniques, to exploit the full potential of drug-target-disease connections.

10.
PLoS One ; 15(5): e0233089, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32459810

RESUMO

Many drugs are promiscuous and bind to multiple targets. On the one hand, these targets may be linked to unwanted side effects, but on the other, they may achieve a combined desired effect (polypharmacology) or represent multiple diseases (drug repositioning). With the growth of 3D structures of drug-target complexes, it is today possible to study drug promiscuity at the structural level and to screen vast amounts of drug-target interactions to predict side effects, polypharmacological potential, and repositioning opportunities. Here, we pursue such an approach to identify drugs inactivating B-cells, whose dysregulation can function as a driver of autoimmune diseases. Screening over 500 kinases, we identified 22 candidate targets, whose knock out impeded the activation of B-cells. Among these 22 is the gene KDR, whose gene product VEGFR2 is a prominent cancer target with anti-VEGFR2 drugs on the market for over a decade. The main result of this paper is that structure-based drug repositioning for the identified kinase targets identified the cancer drug ibrutinib as micromolar VEGFR2 inhibitor with a very high therapeutic index in B-cell inactivation. These findings prove that ibrutinib is not only acting on the Bruton's tyrosine kinase BTK, against which it was designed. Instead, it may be a polypharmacological drug, which additionally targets angiogenesis via inhibition of VEGFR2. Therefore ibrutinib carries potential to treat other VEGFR2 associated disease. Structure-based drug repositioning explains ibrutinib's anti VEGFR2 action through the conservation of a specific pattern of interactions of the drug with BTK and VEGFR2. Overall, structure-based drug repositioning was able to predict these findings at a fraction of the time and cost of a conventional screen.


Assuntos
Reposicionamento de Medicamentos/métodos , Pirazóis/química , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Linfócitos B/metabolismo , Humanos , Células Jurkat , Piperidinas , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Suramina/química , Suramina/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
Sci Rep ; 7(1): 11401, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900272

RESUMO

Drug repositioning identifies new indications for known drugs. Here we report repositioning of the malaria drug amodiaquine as a potential anti-cancer agent. While most repositioning efforts emerge through serendipity, we have devised a computational approach, which exploits interaction patterns shared between compounds. As a test case, we took the anti-viral drug brivudine (BVDU), which also has anti-cancer activity, and defined ten interaction patterns using our tool PLIP. These patterns characterise BVDU's interaction with its target s. Using PLIP we performed an in silico screen of all structural data currently available and identified the FDA approved malaria drug amodiaquine as a promising repositioning candidate. We validated our prediction by showing that amodiaquine suppresses chemoresistance in a multiple myeloma cancer cell line by inhibiting the chaperone function of the cancer target Hsp27. This work proves that PLIP interaction patterns are viable tools for computational repositioning and can provide search query information from a given drug and its target to identify structurally unrelated candidates, including drugs approved by the FDA, with a known safety and pharmacology profile. This approach has the potential to reduce costs and risks in drug development by predicting novel indications for known drugs and drug candidates.


Assuntos
Amodiaquina/farmacologia , Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Biologia Computacional , Reposicionamento de Medicamentos , Amodiaquina/química , Amodiaquina/uso terapêutico , Antimaláricos/química , Antimaláricos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Biologia Computacional/métodos , Reposicionamento de Medicamentos/métodos , Proteínas de Choque Térmico HSP27/antagonistas & inibidores , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Reprodutibilidade dos Testes , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa