Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 806(Pt 2): 150598, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597537

RESUMO

This longitudinal flood-relief study assessed the impact of the March 2019 Cyclone Idai flood event on E. coli contamination of hand-pumped boreholes in Mulanje District, Malawi. It established the microbiological water-quality safety of 279 community supplies over three phases, each comprising water-quality survey, rehabilitation and treatment verification monitoring. Phase 1 contamination three months after Idai was moderate, but likely underestimated. Increased contamination in Phase 2 at 9 months and even greater in Phase 3, a year after Idai was surprising and concerning, with 40% of supplies then registering E. coli contamination and 20% of supplies deemed 'unsafe'. Without donor support for follow-up interventions, this would have been missed by a typical single-phase flood-relief activity. Contamination rebound at boreholes successfully treated months earlier signifies a systemic problem from persistent sources intensified by groundwater levels likely at a decade high. Problem extent in normal, or drier years is unknown due to absence of routine monitoring of water point E. coli in Malawi. Statistical analysis was not conclusive, but was indicative of damaged borehole infrastructure and increased near-borehole pit-latrine numbers being influential. Spatial analysis including groundwater flow-field definition (an overlooked sector opportunity) revealed 'hit-and-miss' contamination of safe and unsafe boreholes in proximity. Hydrogeological control was shown by increased contamination near flood-affected area and in more recent recharge groundwater otherwise of good quality. Pit latrines are presented as credible e-coli sources in a conceptual model accounting for heterogeneous borehole contamination, wet season influence and rebound behavior. Critical to establish are groundwater level - flow direction, hand-pump plume draw, multiple footprint latrine sources - 'skinny' plumes, borehole short-circuiting and fast natural pathway (e.g. fracture flow) and other source influences. Concerted WASH (Water, Sanitation and Hygiene) sector investment in research and policy driving national water point based E. coli monitoring programs are advocated.


Assuntos
Tempestades Ciclônicas , Água Subterrânea , Escherichia coli , Inundações , Abastecimento de Água
2.
Sci Total Environ ; 712: 136260, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31945540

RESUMO

Countries located on the East African Rift System (EARS) are vulnerable to fluoride in their groundwater; a vulnerability for the developing country of Malawi at the southern rift periphery that is not well characterised. Groundwater fluoride occurrence in Malawi is documented here to better understand and manage fluoride risks posed. Available literature and Gov't of Malawi archive fluoride data spanning some fifty years have been collated and augmented by our own 2016-18 surveys of groundwater quality in Southern Malawi, targeting deep-sourced springs. In total, fluoride data for 1365 borehole, spring and hot spring samples were assembled. Statistically, 83% of samples were below the 1.5 mg/l WHO limit, concentrations in the 1.5-6 mg/l range between former (pre-1993) and current WHO guidelines at 14%, and those with fluoride above the current Malawi (former WHO) 6 mg/l guideline, at 3%. A lower occurrence than in other zones of the EARS, but indicative of a need for a Malawi Gov't management policy revision and associated management strategies endorsed by several documented incidences of dental fluorosis in proximity to high fluoride groundwater. Increased fluoride is related to increased groundwater temperatures signifying the importance of geothermal groundwater provenance. Temperature data may indeed be used as a proxy indicator of fluoride risk; samples with a temperature >32 °C, contained >6 mg/l fluoride. Structural geological controls appear to allow deep geothermal groundwaters to come to the near surface, as evidenced by increased fluoride in springs and boreholes close to faulted areas. Hydrochemical evaluation shows that fluoride concentrations are influenced by fluorite equilibration and sensitivity to calcium and pH. Recommendations are made to further document the occurrence of fluoride and enhance management of risks due to fluoride in drinking water in Malawi. With fluoride as a key indicator within Sustainable Development Goal number 6, the current Malawi standard and waters with concentration between 1.5 and 6 mg/l will come under increased scrutiny and pose a key challenge to assessment and management efforts.

3.
Sci Total Environ ; 653: 1005-1024, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30759542

RESUMO

Effective response to groundwater salinity in the developing world may critically safeguard drinking-water supplies. Groundwater resources throughout rural Africa are exploited by a vast and increasing number of hand-pumped boreholes for community supply. Our research in TA Ngabu (Shire Valley), Southern Malawi aims to: define groundwater-salinity problem occurrence within the semi-arid alluvial-valley aquifer, rural developing-world setting; critique current capacity to respond; and, to discuss future response options - in particular considering the need to explore alternative options that boldly go beyond the world of hand-pumped groundwater supply. Salinity problem definition was achieved through survey of 419 hand-pumped boreholes that revealed widespread brackish groundwater leading to non-potable (unpalatable) drinking-water supplies. Persistent non-functionality or abandonment of boreholes was typically ascribed to salinity. Whilst salinity is conceptualised to arise from shallow-groundwater evaporation, formation-evaporite dissolution and faulted-area upwelling, sparse data locally renders attribution of salinity sources to individual boreholes difficult. There is a significant need to better resolve the vertical distribution of salinity and local controlling processes. Problem response capacity was hampered by multiple factors, including, sector inertia, low drilling costs compromising water-point integrity, and lack of technical vision for alternatives. Various recommendations are made to improve response capacity continuing to work at the hand-pump supply scale. However, in areas where salinity is significant, exploring the feasibility of other options is advocated in conjunction with technical capacity development. Groundwater options may utilise high borehole yields possible from alluvial aquifers, grossly under-exploited by hand pumps. Groundwater at depth, albeit of unknown quality typically, or pipeline transfers of probable good-quality groundwater from valley-margin units, should be considered. Surface-water pipeline supplies may be viable for (growing) population centres. Canal-fed irrigation schemes (pending for the area), should be multiple-use, protective of groundwater and embrace pipeline drinking-water supply and managed-aquifer-recharge opportunities. Advancing desalination technologies, although presently unaffordable, should be kept under review.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa