Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Xenobiotica ; 49(11): 1352-1359, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30557119

RESUMO

1. The metabolic fate and urinary excretion of 2-bromophenol, a phenolic metabolite of bromobenzene, was investigated in male Sprague-Dawley rats following single intraperitoneal doses at either 0, 100, or 200 mg/kg.2. Urine was collected for seven days and samples analysed using 1 H NMR spectroscopy, inductively coupled plasma (ICP)MS, and UPLC-MS.3. 1 H NMR spectroscopy of the urine samples showed that, at these doses, 2-bromophenol had little effect on endogenous metabolite profiles, supporting histopathology and clinical chemistry data, which showed no changes associated with the administration of 2-bromophenol in this study.4. The use of ICP-MS provided a means for the selective detection and quantification of bromine-containing species and showed that between 15 and 30% of the dose was excreted via the urine over 7 days of the study for both the 100 and 200 mg doses, respectively.5. The bulk of the excretion of Br-containing material had occurred by 8 h post administration. UPLC-MS of urine revealed a number of metabolites of 2-bromophenol, with 2-bromophenol glucuronide and 2-bromophenol sulphate identified as the major species. A number of minor hydroxylated metabolites were also detected as their glucuronide, sulphate, or O-methyl conjugates. There was no evidence for the production of reactive metabolites.


Assuntos
Substâncias Perigosas/toxicidade , Fenóis/toxicidade , Testes de Toxicidade , Animais , Masculino , Ratos , Ratos Sprague-Dawley
2.
Anal Chem ; 88(11): 5742-51, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27116471

RESUMO

A rapid gradient microbore ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) method has been developed to provide a high-throughput analytical platform for the metabolic phenotyping of urine from large sample cohorts. The rapid microbore metabolic profiling (RAMMP) approach was based on scaling a conventional reversed-phase UPLC-MS method for urinary profiling from 2.1 mm × 100 mm columns to 1 mm × 50 mm columns, increasing the linear velocity of the solvent, and decreasing the gradient time to provide an analysis time of 2.5 min/sample. Comparison showed that conventional UPLC-MS and rapid gradient approaches provided peak capacities of 150 and 50, respectively, with the conventional method detecting approximately 19 000 features compared to the ∼6 000 found using the rapid gradient method. Similar levels of repeatability were seen for both methods. Despite the reduced peak capacity and the reduction in ions detected, the RAMMP method was able to achieve similar levels of group discrimination as conventional UPLC-MS when applied to rat urine samples obtained from investigative studies on the effects of acute 2-bromophenol and chronic acetaminophen administration. When compared to a direct infusion MS method of similar analysis time the RAMMP method provided superior selectivity. The RAMMP approach provides a robust and sensitive method that is well suited to high-throughput metabonomic analysis of complex mixtures such as urine combined with a 5-fold reduction in analysis time compared with the conventional UPLC-MS method.


Assuntos
Acetaminofen/urina , Ensaios de Triagem em Larga Escala , Fenóis/urina , Acetaminofen/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Metaboloma , Metabolômica , Fenóis/metabolismo , Fenótipo , Ratos
3.
Sci Rep ; 7(1): 2989, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592827

RESUMO

Metabolic phenotypes reflect both the genetic and environmental factors which contribute to the development of varicose veins (VV). This study utilises analytical techniques to provide a comprehensive metabolic picture of VV disease, with the aim of identifying putative cellular pathways of disease pathogenesis. VV (n = 80) and non-VV (n = 35) aqueous and lipid metabolite extracts were analysed using 600 MHz 1H Nuclear Magnetic Resonance spectroscopy and Ultra-Performance Liquid Chromatography Mass Spectrometry. A subset of tissue samples (8 subjects and 8 controls) were analysed for microRNA expression and the data analysed with mirBase (www.mirbase.org). Using Multivariate statistical analysis, Ingenuity pathway analysis software, DIANALAB database and published literature, the association of significant metabolites with relevant cellular pathways were understood. Higher concentrations of glutamate, taurine, myo-inositol, creatine and inosine were present in aqueous extracts and phosphatidylcholine, phosphatidylethanolamine and sphingomyelin in lipid extracts in the VV group compared with non-VV group. Out of 7 differentially expressed miRNAs, spearman correlation testing highlighted correlation of hsa-miR-642a-3p, hsa-miR-4459 and hsa-miR-135a-3p expression with inosine in the vein tissue, while miR-216a-5p, conversely, was correlated with phosphatidylcholine and phosphatidylethanolamine. Pathway analysis revealed an association of phosphatidylcholine and sphingomyelin with inflammation and myo-inositol with cellular proliferation.


Assuntos
Metaboloma , Varizes/patologia , Cromatografia Líquida de Alta Pressão , Feminino , Perfilação da Expressão Gênica , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Espectrometria de Massas , RNA Mensageiro/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa