Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Nucleic Acids Res ; 50(22): 12689-12701, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36537251

RESUMO

CRISPR-Cas12a is an RNA-guided, programmable genome editing enzyme found within bacterial adaptive immune pathways. Unlike CRISPR-Cas9, Cas12a uses only a single catalytic site to both cleave target double-stranded DNA (dsDNA) (cis-activity) and indiscriminately degrade single-stranded DNA (ssDNA) (trans-activity). To investigate how the relative potency of cis- versus trans-DNase activity affects Cas12a-mediated genome editing, we first used structure-guided engineering to generate variants of Lachnospiraceae bacterium Cas12a that selectively disrupt trans-activity. The resulting engineered mutant with the biggest differential between cis- and trans-DNase activity in vitro showed minimal genome editing activity in human cells, motivating a second set of experiments using directed evolution to generate additional mutants with robust genome editing activity. Notably, these engineered and evolved mutants had enhanced ability to induce homology-directed repair (HDR) editing by 2-18-fold compared to wild-type Cas12a when using HDR donors containing mismatches with crRNA at the PAM-distal region. Finally, a site-specific reversion mutation produced improved Cas12a (iCas12a) variants with superior genome editing efficiency at genomic sites that are difficult to edit using wild-type Cas12a. This strategy establishes a pipeline for creating improved genome editing tools by combining structural insights with randomization and selection. The available structures of other CRISPR-Cas enzymes will enable this strategy to be applied to improve the efficacy of other genome-editing proteins.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas/genética , DNA , DNA de Cadeia Simples/genética , Edição de Genes/métodos , Proteínas Associadas a CRISPR , Endodesoxirribonucleases
2.
BMC Health Serv Res ; 24(1): 159, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302955

RESUMO

BACKGROUND: Peer support is an essential part of recovery-oriented care worldwide. Contextual factors have an impact on the implementation of peer support work. However, research has paid little attention to similarities and differences of implementation factors in settings varying by income-level and cultural values. The aim of this study is to assess the factors influencing the implementation of a peer support intervention across study sites in low-, middle- and high-income countries in line with the Consolidation Framework for Implementation Research (CFIR). METHOD: 6 focus groups with a total of 54 key informants with relevant contextual (organisational) knowledge regarding implementation facilitators and barriers were conducted at six study sites Ulm and Hamburg (Germany), Butabika (Uganda), Dar es Salaam (Tanzania), Be'er Sheva (Israel), and Pune (India) before and 1.5 years after the start of UPSIDES peer support. Transcripts were analysed using qualitative content analysis. RESULTS: Across study sites key informants reported benefits of peer support for service users and peer support workers as implementation facilitators. At study sites with lower resources, reduced workload for mental health workers and improved access to mental health services through peer support were perceived as implementation facilitators (CFIR Domain 1: Intervention characteristics). The degree of engagement of mental health workers (CFIR Domain 3: Inner Setting/Domain 4: Individuals involved) varied across study sites and was seen either as a barrier (low engagement) or a facilitator (high engagement). Across study sites, adequate training of peer support workers (CFIR Domain 5: Implementation process) was seen as animplementation facilitator, while COVID-19 as well as low resource availability were reported as implementation barriers (CFIR Domain 2: Outer setting). CONCLUSIONS: This study highlights the importance of considering contextual factors when implementing peer support, including previous experience and perceived benefits. Particular attention should be given to organisational benefits such as workload reduction and the allocation of sufficient resources as key drivers in LMICs. In HICs, the potential of organisational benefits for successful implementation should be further investigated and promoted.


Assuntos
COVID-19 , Serviços de Saúde Mental , Humanos , Aconselhamento , Índia , Pesquisa Qualitativa , Tanzânia
3.
Mol Microbiol ; 116(5): 1392-1406, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34657338

RESUMO

Spirochetes can be distinguished from other bacteria by their spiral-shaped morphology and subpolar periplasmic flagella. This study focused on FlhF and FlhG, which control the spatial and numerical regulation of flagella in many exoflagellated bacteria, in the spirochete Leptospira. In contrast to flhF which seems to be essential in Leptospira, we demonstrated that flhG- mutants in both the saprophyte L. biflexa and the pathogen L. interrogans were less motile than the wild-type strains in gel-like environments but not hyperflagellated as reported previously in other bacteria. Cryo-electron tomography revealed that the distance between the flagellar basal body and the tip of the cell decreased significantly in the flhG- mutant in comparison to wild-type and complemented strains. Additionally, comparative transcriptome analyses of L. biflexa flhG- and wild-type strains showed that FlhG acts as a negative regulator of transcription of some flagellar genes. We found that the L. interrogans flhG- mutant was attenuated for virulence in the hamster model. Cross-species complementation also showed that flhG is not interchangeable between species. Our results indicate that FlhF and FlhG in Leptospira contribute to governing cell motility but our data support the hypothesis that FlhF and FlhG function differently in each bacterial species, including among spirochetes.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flagelos/genética , Flagelos/metabolismo , Leptospira/genética , Leptospira/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Microscopia Crioeletrônica , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Humanos , Leptospira/citologia , Leptospirose/microbiologia , Mutação , Spirochaetales/genética , Spirochaetales/metabolismo , Virulência
4.
PLoS Pathog ; 16(8): e1008639, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32790743

RESUMO

Leptospirosis is a worldwide re-emerging zoonosis caused by pathogenic Leptospira spp. All vertebrate species can be infected; humans are sensitive hosts whereas other species, such as rodents, may become long-term renal carrier reservoirs. Upon infection, innate immune responses are initiated by recognition of Microbial Associated Molecular Patterns (MAMPs) by Pattern Recognition Receptors (PRRs). Among MAMPs, the lipopolysaccharide (LPS) is recognized by the Toll-Like-Receptor 4 (TLR4) and activates both the MyD88-dependent pathway at the plasma membrane and the TRIF-dependent pathway after TLR4 internalization. We previously showed that leptospiral LPS is not recognized by the human-TLR4, whereas it signals through mouse-TLR4 (mTLR4), which mediates mouse resistance to acute leptospirosis. However, although resistant, mice are known to be chronically infected by leptospires. Interestingly, the leptospiral LPS has low endotoxicity in mouse cells and is an agonist of TLR2, the sensor for bacterial lipoproteins. Here, we investigated the signaling properties of the leptospiral LPS in mouse macrophages. Using confocal microscopy and flow cytometry, we showed that the LPS of L. interrogans did not induce internalization of mTLR4, unlike the LPS of Escherichia coli. Consequently, the LPS failed to induce the production of the TRIF-dependent nitric oxide and RANTES, both important antimicrobial responses. Using shorter LPS and LPS devoid of TLR2 activity, we further found this mTLR4-TRIF escape to be dependent on both the co-purifying lipoproteins and the full-length O antigen. Furthermore, our data suggest that the O antigen could alter the binding of the leptospiral LPS to the co-receptor CD14 that is essential for TLR4-TRIF activation. Overall, we describe here a novel leptospiral immune escape mechanism from mouse macrophages and hypothesize that the LPS altered signaling could contribute to the stealthiness and chronicity of the leptospires in mice.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Leptospira/imunologia , Leptospirose/imunologia , Lipopolissacarídeos/metabolismo , Lipoproteínas/metabolismo , Antígenos O/metabolismo , Receptor 4 Toll-Like/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Citocinas/metabolismo , Feminino , Leptospirose/metabolismo , Leptospirose/microbiologia , Leptospirose/patologia , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Lipoproteínas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/fisiologia , Antígenos O/genética , Transdução de Sinais , Receptor 2 Toll-Like/fisiologia
6.
Curr Top Microbiol Immunol ; 415: 189-214, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29696440

RESUMO

Until about 15 years ago, the molecular and cellular basis for pathogenesis in leptospirosis was virtually unknown. The determination of the first full genome sequence in 2003 was followed rapidly by other whole genome sequences, whose availability facilitated the development of transposon mutagenesis and then directed mutagenesis of pathogenic Leptospira spp. The combination of genomics, transcriptomics and mutant construction and characterisation has resulted in major progress in our understanding of the taxonomy and biology of Leptospira. The most recent advances are analysed and discussed in this chapter.


Assuntos
Genoma Bacteriano/genética , Genômica , Leptospira/genética , Leptospira/patogenicidade , Leptospirose/microbiologia , Humanos
7.
Infect Immun ; 85(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28874446

RESUMO

The lipopolysaccharide (LPS) produced by the Gram-negative bacterial pathogen Pasteurella multocida has phosphoethanolamine (PEtn) residues attached to lipid A, 3-deoxy-d-manno-octulosonic acid (Kdo), heptose, and galactose. In this report, we show that PEtn is transferred to lipid A by the P. multocida EptA homologue, PetL, and is transferred to galactose by a novel PEtn transferase that is unique to P. multocida called PetG. Transcriptomic analyses indicated that petL expression was positively regulated by the global regulator Fis and negatively regulated by an Hfq-dependent small RNA. Importantly, we have identified a novel PEtn transferase called PetK that is responsible for PEtn addition to the single Kdo molecule (Kdo1), directly linked to lipid A in the P. multocida glycoform A LPS. In vitro assays showed that the presence of a functional petL and petK, and therefore the presence of PEtn on lipid A and Kdo1, was essential for resistance to the cationic, antimicrobial peptide cathelicidin-2. The importance of PEtn on Kdo1 and the identification of the transferase responsible for this addition have not previously been shown. Phylogenetic analysis revealed that PetK is the first representative of a new family of predicted PEtn transferases. The PetK family consists of uncharacterized proteins from a range of Gram-negative bacteria that produce LPS glycoforms with only one Kdo molecule, including pathogenic species within the genera Vibrio, Bordetella, and Haemophilus We predict that many of these bacteria will require the addition of PEtn to Kdo for maximum protection against host antimicrobial peptides.


Assuntos
Proteínas de Bactérias/genética , Proteínas Sanguíneas/toxicidade , Farmacorresistência Bacteriana/genética , Etanolaminofosfotransferase/genética , Regulação Bacteriana da Expressão Gênica , Pasteurella multocida/genética , Pasteurella multocida/patogenicidade , Precursores de Proteínas/toxicidade , Animais , Proteínas de Bactérias/metabolismo , Galinhas , Biologia Computacional , Etanolaminofosfotransferase/metabolismo , Etanolaminas/química , Etanolaminas/metabolismo , Fator Proteico para Inversão de Estimulação/genética , Fator Proteico para Inversão de Estimulação/metabolismo , Galactose/química , Galactose/metabolismo , Perfilação da Expressão Gênica , Heptoses/química , Heptoses/metabolismo , Isoenzimas , Lipídeo A/química , Lipídeo A/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/patologia , Pasteurella multocida/classificação , Pasteurella multocida/efeitos dos fármacos , Filogenia , Açúcares Ácidos/química , Açúcares Ácidos/metabolismo , Transcriptoma
8.
Infect Immun ; 84(5): 1361-1370, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26883595

RESUMO

The Gram-negative bacterium Pasteurella multocida is the causative agent of a number of economically important animal diseases, including avian fowl cholera. Numerous P. multocida virulence factors have been identified, including capsule, lipopolysaccharide (LPS), and filamentous hemagglutinin, but little is known about how the expression of these virulence factors is regulated. Hfq is an RNA-binding protein that facilitates riboregulation via interaction with small noncoding RNA (sRNA) molecules and their mRNA targets. Here, we show that a P. multocida hfq mutant produces significantly less hyaluronic acid capsule during all growth phases and displays reduced in vivo fitness. Transcriptional and proteomic analyses of the hfq mutant during mid-exponential-phase growth revealed altered transcript levels for 128 genes and altered protein levels for 78 proteins. Further proteomic analyses of the hfq mutant during the early exponential growth phase identified 106 proteins that were produced at altered levels. Both the transcript and protein levels for genes/proteins involved in capsule biosynthesis were reduced in the hfq mutant, as were the levels of the filamentous hemagglutinin protein PfhB2 and its secretion partner LspB2. In contrast, there were increased expression levels of three LPS biosynthesis genes, encoding proteins involved in phosphocholine and phosphoethanolamine addition to LPS, suggesting that these genes are negatively regulated by Hfq-dependent mechanisms. Taken together, these data provide the first evidence that Hfq plays a crucial role in regulating the global expression of P. multocida genes, including the regulation of key P. multocida virulence factors, capsule, LPS, and filamentous hemagglutinin.


Assuntos
Cápsulas Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , Ácido Hialurônico/metabolismo , Pasteurella multocida/genética , Pasteurella multocida/metabolismo , Fatores de Virulência/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Proteoma/análise
9.
BMC Genomics ; 17: 331, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27147217

RESUMO

BACKGROUND: Burkholderia pseudomallei is the causative agent of melioidosis, a severe invasive disease of humans and animals. Initial screening of a B. pseudomallei signature-tagged mutagenesis library identified an attenuated mutant with a transposon insertion in a gene encoding the sensor component of an uncharacterised two-component signal transduction system (TCSTS), which we designated BprRS. RESULTS: Single gene inactivation of either the response regulator gene (bprR) or the sensor histidine kinase gene (bprS) resulted in mutants with reduced swarming motility and reduced virulence in mice. However, a bprRS double mutant was not attenuated for virulence and displayed wild-type levels of motility. The transcriptomes of the bprS, bprR and bprRS mutants were compared with the transcriptome of the parent strain K96243. Inactivation of the entire BprRS TCSTS (bprRS double mutant) resulted in altered expression of only nine genes, including both bprR and bprS, five phage-related genes and bpss0686, encoding a putative 5, 10-methylene tetrahydromethanopterin reductase involved in one carbon metabolism. In contrast, the transcriptomes of each of the bprR and bprS single gene mutants revealed more than 70 differentially expressed genes common to both mutants, including regulatory genes and those required for flagella assembly and for the biosynthesis of the cytotoxic polyketide, malleilactone. CONCLUSIONS: Inactivation of the entire BprRS TCSTS did not alter virulence or motility and very few genes were differentially expressed indicating that the definitive BprRS regulon is relatively small. However, loss of a single component, either the sensor histidine kinase BprS or its cognate response regulator BprR, resulted in significant transcriptomic and phenotypic differences from the wild-type strain. We hypothesize that the dramatically altered phenotypes of these single mutants are the result of cross-regulation with one or more other TCSTSs and concomitant dysregulation of other key regulatory genes.


Assuntos
Burkholderia pseudomallei/patogenicidade , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Burkholderia pseudomallei/genética , Regulação Bacteriana da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Mutação , Virulência
10.
Artigo em Inglês | MEDLINE | ID: mdl-25388129

RESUMO

Leptospira was isolated and identified as the causative agent of the severe human syndrome Weil's disease about 100 years ago almost simultaneously, but independently, by workers in Japan and Europe. Since that time leptospires have been isolated from almost all mammalian species on every continent except Antarctica, with leptospirosis now recognized as the most widespread zoonosis worldwide and also a major cause of disease in many domestic animal species. Recent advances in molecular taxonomy have facilitated the development of a rational classification system, while the availability of genome sequences and the development of mutagenesis systems have begun to shed light on mechanisms of pathogenesis that appear to be unique to Leptospira.


Assuntos
Leptospira/classificação , Leptospirose/história , Animais , História do Século XIX , História do Século XX , Humanos , Leptospira/genética
11.
Curr Top Microbiol Immunol ; 387: 251-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25388138

RESUMO

Vaccines against leptospirosis followed within a year of the first isolation of Leptospira, with the first use of a killed whole cell bacterin vaccine in guinea pigs published in 1916. Since then, bacterin vaccines have been used in humans, cattle, swine, and dogs and remain the only vaccines licensed at the present time. The immunity elicited is restricted to serovars with related lipopolysaccharide (LPS) antigen. Likewise, vaccines based on LPS antigens have clearly demonstrated protection in animal models, which is also at best serogroup specific. The advent of leptospiral genome sequences has allowed a reverse vaccinology approach for vaccine development. However, the use of inadequate challenge doses and inappropriate statistical analysis invalidates many of the claims of protection with recombinant proteins.


Assuntos
Vacinas Bacterianas/imunologia , Leptospira/imunologia , Leptospirose/prevenção & controle , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Humanos , Lipoproteínas/imunologia
12.
Infect Immun ; 83(4): 1276-85, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25605762

RESUMO

Melioidosis is an infectious disease of high mortality for humans and other animal species; it is prevalent in tropical regions worldwide. The pathogenesis of melioidosis depends on the ability of its causative agent, the Gram-negative bacterium Burkholderia pseudomallei, to enter and survive in host cells. B. pseudomallei can escape from the phagosome into the cytosol of phagocytic cells where it replicates and acquires actin-mediated motility, avoiding killing by the autophagy-dependent process, LC3 (microtubule-associated protein light chain 3)-associated phagocytosis (LAP). The type III secretion system cluster 3 (TTSS3) facilitates bacterial escape from phagosomes, although the mechanism has not been fully elucidated. Given the recent identification of small-molecule inhibitors of the TTSS ATPase, we sought to determine the potential of the predicted TTSS3 ATPase, encoded by bsaS, as a target for chemotherapeutic treatment of infection. A B. pseudomallei bsaS deletion mutant was generated and used as a control against which to assess the effect of inhibitor treatment. Infection of RAW 264.7 cells with wild-type bacteria and subsequent treatment with the ATPase inhibitor compound 939 resulted in reduced intracellular bacterial survival, reduced escape from phagosomes, and increased colocalization with both LC3 and the lysosomal marker LAMP1 (lysosome-associated membrane protein 1). These changes were similar to those observed for infection of RAW 264.7 cells with the bsaS deletion mutant. We propose that treatment with the ATPase inhibitor compound 939 decreased intracellular bacterial survival through a reduced ability of bacteria to escape from phagosomes and increased killing via LAP. Therefore, small-molecule inhibitors of the TTSS3 ATPase have potential as therapeutic treatments against melioidosis.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Sistemas de Secreção Bacterianos/imunologia , Burkholderia pseudomallei/efeitos dos fármacos , Burkholderia pseudomallei/enzimologia , Melioidose/tratamento farmacológico , Animais , Proteínas de Bactérias/genética , Burkholderia pseudomallei/genética , Linhagem Celular , Feminino , Evasão da Resposta Imune , Estimativa de Kaplan-Meier , Proteínas de Membrana Lisossomal/imunologia , Melioidose/patologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Associadas aos Microtúbulos/imunologia , Fagocitose/imunologia , Fatores de Virulência/genética
13.
Glycobiology ; 25(3): 294-302, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25298538

RESUMO

Pasteurella multocida is an important veterinary pathogen that produces a wide range of lipopolysaccharide (LPS) structures, many of which mimic host glycoproteins. In this study, we complete our analysis of the LPS produced by the P. multocida Heddleston serovars by reporting the LPS structure and the LPS outer core biosynthesis loci of the type strains representing Heddleston serovars 6, 7 and 16. Genetic analysis revealed that the type strains representing serovars 6 and 7 share the same LPS outer core biosynthesis locus which we have designated LPS genotype L4. Comparative bioinformatic analysis revealed that although the serovar 16 type strain contained a different LPS locus, L8, there was a significant degree of nucleotide identity between the L4 and L8 loci. Structural analysis revealed that the LPS glycoforms produced by the L4 and L8 strains all contained the highly conserved inner core produced by all other P. multocida strains examined to date. The residues within the LPS outer core produced by the L4 and L8 strains were either Gal or derivatives of Gal; unlike all other P. multocida Heddleston type strains examined there are no heptosyltransferases encoded in the L4 and L8 outer core biosynthesis loci. The structure of the L4 LPS outer core produced by the serovar 6 type strain consisted of ß-Gal-(1-3)-ß-N-acetylgalactosamine (GalNAc)-(1-4)-ß-GalNAc3OAc-(1-4)-α-GalNAc3OAc-(1-3)-ß-Gal, whereas the serovar 7 type strain produced a highly truncated LPS outer core containing only a single ß-Gal residue. The structure of the L8 LPS outer core produced by the serovar 16 type strain consisted of ß-Gal-(1-3)-ß-GalNAc-(1-4)-(α-GalNAc-(1-3)-)-α-GalNAc.


Assuntos
Gammaproteobacteria/genética , Genótipo , Lipopolissacarídeos/química , Sorogrupo , Gammaproteobacteria/metabolismo , Lipopolissacarídeos/biossíntese
14.
J Clin Microbiol ; 53(2): 477-85, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25428149

RESUMO

Pasteurella multocida is a Gram-negative bacterial pathogen that is the causative agent of a wide range of diseases in many animal species, including humans. A widely used method for differentiation of P. multocida strains involves the Heddleston serotyping scheme. This scheme was developed in the early 1970s and classifies P. multocida strains into 16 somatic or lipopolysaccharide (LPS) serovars using an agar gel diffusion precipitin test. However, this gel diffusion assay is problematic, with difficulties reported in accuracy, reproducibility, and the sourcing of quality serovar-specific antisera. Using our knowledge of the genetics of LPS biosynthesis in P. multocida, we have developed a multiplex PCR (mPCR) that is able to differentiate strains based on the genetic organization of the LPS outer core biosynthesis loci. The accuracy of the LPS-mPCR was compared with classical Heddleston serotyping using LPS compositional data as the "gold standard." The LPS-mPCR correctly typed 57 of 58 isolates; Heddleston serotyping was able to correctly and unambiguously type only 20 of the 58 isolates. We conclude that our LPS-mPCR is a highly accurate LPS genotyping method that should replace the Heddleston serotyping scheme for the classification of P. multocida strains.


Assuntos
Vias Biossintéticas/genética , Genótipo , Lipopolissacarídeos/biossíntese , Tipagem Molecular/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Pasteurella multocida/classificação , Pasteurella multocida/genética , Animais , Humanos , Infecções por Pasteurella/diagnóstico , Infecções por Pasteurella/microbiologia , Fatores de Tempo
15.
J Antimicrob Chemother ; 70(5): 1303-13, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25587995

RESUMO

OBJECTIVES: Colistin remains a last-line treatment for MDR Acinetobacter baumannii and combined use of colistin and carbapenems has shown synergistic effects against MDR strains. In order to understand the bacterial responses to these antibiotics, we analysed the transcriptome of A. baumannii following exposure to each. METHODS: RNA sequencing was employed to determine changes in the transcriptome following treatment with colistin and doripenem, both alone and in combination, using an in vitro pharmacokinetics (PK)/pharmacodynamics model to mimic the PK of both antibiotics in patients. RESULTS: After treatment with colistin (continuous infusion at 2 mg/L), >400 differentially regulated genes were identified, including many associated with outer membrane biogenesis, fatty acid metabolism and phospholipid trafficking. No genes were differentially expressed following treatment with doripenem (Cmax 25 mg/L, t1/2 1.5 h) for 15 min, but 45 genes were identified as differentially expressed after 1 h of growth under this condition. Treatment of A. baumannii with both colistin and doripenem together for 1 h resulted in >450 genes being identified as differentially expressed. More than 70% of these gene expression changes were also observed following colistin treatment alone. CONCLUSIONS: These data suggest that colistin causes gross damage to the outer membrane, facilitates lipid exchange between the inner and outer membrane and alters the normal asymmetric outer membrane composition. The transcriptional response to colistin was highly similar to that observed for an LPS-deficient strain, indicating that many of the observed changes are responses to outer membrane instability resulting from LPS loss.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Colistina/farmacologia , Perfilação da Expressão Gênica , Antibacterianos/farmacocinética , Carbapenêmicos/farmacocinética , Colistina/farmacocinética , Doripenem , Modelos Teóricos , Análise de Sequência de RNA , Fatores de Tempo
16.
Cell Microbiol ; 16(9): 1366-77, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24655538

RESUMO

Leptospira interrogans is responsible for the zoonotic disease leptospirosis. The pathogenic mechanisms of this spirochaete remain poorly understood; however, virulence has been correlated with increased phagocytic uptake and survival within macrophages. Leptospiral outer membrane proteins are thought to be responsible for persistence in vivo via interaction with specific host components. In this study, we analysed the transcriptional profile of a virulent strain and its culture-attenuated derivative strain to identify bacterial factors that may be involved in pathogenesis. Two outer membrane proteins, LMB216 and LigB (leptospiral immunoglobulin-like protein B) were downregulated more than 10-fold in the culture-attenuated strain. We show that both proteins play a role in leptospiral uptake by macrophages and that LMB216, as well as LigB, enhances the binding of leptospires to fibronectin. Taken together, our results indicate that LMB216 plays a role in pathogen interaction with host molecule/s, which may contribute to pathogenesis of leptospirosis.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Leptospira interrogans/metabolismo , Macrófagos/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Bioorg Med Chem Lett ; 25(22): 5025-7, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26497285

RESUMO

A putative antibacterial and antifungal compound, (R)-2-methylheptyl isonicotinate, was synthesized via reductive lactone alkylation of (R)-4-methyldihydrofuran-2(3H)-one. Structural characterisation data as well as bioassay results (with Bacillus subtilis or Escherichia coli) contradict those previously reported.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Ácidos Isonicotínicos/síntese química , Ácidos Isonicotínicos/farmacologia , Ampicilina/farmacologia , Antibacterianos/química , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Ácidos Isonicotínicos/química , Estrutura Molecular
18.
Curr Microbiol ; 71(5): 613-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26297175

RESUMO

Shigella flexneri secretes an enterotoxic, SPATE family autotransporter (AT), SigA, which has cytopathic activity towards cultured epithelial cells. Its cytopathic activity is due to its ability to degrade the cytoskeletal protein, α-fodrin. The mechanisms by which AT toxins target cells and tissues differ and the details of how SigA acts are not known. In the current study, the determinants of proteolysis and cell-targeting for SigA were determined. We demonstrate that the SigA passenger or α-domain consists of two functionally distinct domains, designated α1 and α2, which are sufficient to specify proteolytic and cell-binding activities, respectively.


Assuntos
Toxinas Bacterianas/metabolismo , Citotoxinas/metabolismo , Shigella flexneri/metabolismo , Toxinas Bacterianas/genética , Linhagem Celular , Citotoxinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Domínios e Motivos de Interação entre Proteínas/genética , Proteólise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Shigella flexneri/genética
19.
Infect Immun ; 82(3): 1123-31, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24366253

RESUMO

Leptospira interrogans is a global zoonotic pathogen and is the causative agent of leptospirosis, an endemic disease of humans and animals worldwide. There is limited understanding of leptospiral pathogenesis; therefore, further elucidation of the mechanisms involved would aid in vaccine development and the prevention of infection. HtpG (high-temperature protein G) is the bacterial homolog to the highly conserved molecular chaperone Hsp90 and is important in the stress responses of many bacteria. The specific role of HtpG, especially in bacterial pathogenesis, remains largely unknown. Through the use of an L. interrogans htpG transposon insertion mutant, this study demonstrates that L. interrogans HtpG is essential for virulence in the hamster model of acute leptospirosis. Complementation of the htpG mutant completely restored virulence. Surprisingly, the htpG mutant did not appear to show sensitivity to heat or oxidative stress, phenotypes common in htpG mutants in other bacterial species. Furthermore, the mutant did not show increased sensitivity to serum complement, reduced survival within macrophages, or altered protein or lipopolysaccharide expression. The underlying cause for attenuation thus remains unknown, but HtpG is a novel leptospiral virulence factor and one of only a very small number identified to date.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas de Choque Térmico HSP90/imunologia , Leptospira interrogans/imunologia , Leptospirose/imunologia , Fatores de Virulência/imunologia , Animais , Proteínas de Bactérias/genética , Biologia Computacional , Feminino , Imunidade Inata/genética , Imunidade Inata/imunologia , Leptospira interrogans/genética , Leptospirose/genética , Leptospirose/microbiologia , Masculino , Mesocricetus/genética , Mesocricetus/imunologia , Mesocricetus/microbiologia , Mutação/genética , Mutação/imunologia , Pressão Osmótica , Estresse Oxidativo/genética , Estresse Oxidativo/imunologia , Temperatura , Fatores de Virulência/genética
20.
Glycobiology ; 24(7): 649-59, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24740556

RESUMO

Pasteurella multocida is a Gram-negative bacterial pathogen classified into 16 serovars based on lipopolysaccharide (LPS) antigens. Previously, we have characterized the LPS outer core biosynthesis loci L1, L2, L3, L5 and L7, and have elucidated the full range of LPS structures associated with each. In this study, we have determined the LPS structures produced by the type strains representing the serovars 10, 11, 12 and 15 and characterized a new LPS outer core biosynthesis locus, L6, common to all. The L6 outer core biosynthesis locus shares significant synteny with the L3 locus but due to nucleotide divergence, gene duplication and gene redundancy, the L6 and L3 LPS outer cores are structurally distinct. Using LPS structural and genetic differences identified in each L6 strain, we have predicted a role for most of the L6 glycosyltransferases in LPS assembly. Importantly, we have identified two glycosyltransferases, GctD and GatB, that differ by one amino acid, A162T, but use different donor sugars [uridine diphosphate (UDP)-Glc and UDP-Gal, respectively]. The longest outer core oligosaccharide, produced by the serovar 12 type strain, contained a terminal region consisting of ß-Gal-(1,4)-ß-GlcNAc-(1,3)-ß-Gal-(1,4)-ß-Glc that was identical in structure to the vertebrate glycosphingolipid, paragloboside. Mimicry of host glycosphingolipids has been observed previously in P. multocida strains belonging to L3 LPS genotype, which produce LPS similar in structure to the globo-series of glycosphingolipids. The expression of a paragloboside-like oligosaccharide on the LPS produced by the serovar 12 type strain indicates that strains belonging to the L6 LPS genotype may also engage in molecular mimicry.


Assuntos
Loci Gênicos , Genoma Bacteriano , Lipopolissacarídeos/química , Pasteurella multocida/genética , Sorogrupo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sequência de Carboidratos , Duplicação Gênica , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Lipopolissacarídeos/metabolismo , Dados de Sequência Molecular , Pasteurella multocida/química , Pasteurella multocida/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa