Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biol Lett ; 8(5): 794-7, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22764109

RESUMO

One condition for the evolution of altruism is genetic relatedness between altruist and beneficiary, often achieved through active kin recognition. Here, we investigate the power of a passive process resulting from genetic drift during population growth in the social amoeba Dictyostelium discoideum. We put labelled and unlabelled cells of the same clone in the centre of a plate, and allowed them to proliferate outward. Zones formed by genetic drift owing to the small population of actively growing cells at the colony edge. We also found that single cells could form zones of high relatedness. Relatedness increased at a significantly higher rate when food was in short supply. This study shows that relatedness can be significantly elevated before the social stage without a small founding population size or recognition mechanism.


Assuntos
Dictyostelium/fisiologia , Deriva Genética , Altruísmo , Evolução Biológica , Comunicação Celular , Cor , Simulação por Computador , Variação Genética , Genótipo , Modelos Biológicos , Modelos Genéticos , Modelos Estatísticos
2.
Microbiome ; 10(1): 6, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039079

RESUMO

BACKGROUND: The lack of a definition of urinary microbiome health convolutes diagnosis of urinary tract infections (UTIs), especially when non-traditional uropathogens or paucity of bacteria are recovered from symptomatic patients in routine standard-of-care urine tests. Here, we used shotgun metagenomic sequencing to characterize the microbial composition of asymptomatic volunteers in a set of 30 longitudinally collected urine specimens. Using permutation tests, we established a range of asymptomatic microbiota states, and use these to contextualize the microbiota of 122 urine specimens collected from patients with suspected UTIs diagnostically categorized by standard-of-care urinalysis within that range. Finally, we used a standard-of-care culture protocol to evaluate the efficiency of culture-based recovery of the urinary microbiota. RESULTS: The majority of genitourinary microbiota in individals suspected to have UTI overlapped with the spectrum of asymptomatic microbiota states. Longitudinal characterization of the genitourinary microbiome in urine specimens collected from asymptomatic volunteers revealed fluctuations of microbial functions and taxonomy over time. White blood cell counts from urinalysis suggested that urine specimens categorized as 'insignificant', 'contaminated', or 'no-growth' by conventional culture methods frequently showed signs of urinary tract inflammation, but this inflammation is not associated with genitourinary microbiota dysbiosis. Comparison of directly sequenced urine specimens with standard-of-care culturing confirmed that culture-based diagnosis biases genitourinary microbiota recovery towards the traditional uropathogens Escherichia coli and Klebsiella pneumoniae. CONCLUSION: Here, we utilize shotgun metagenomic sequencing to establish a baseline of asymptomatic genitourinary microbiota states. Using this baseline we establish substantial overlap between symptomatic and asymptomatic genitourinary microbiota states. Our results establish that bacterial presence alone does not explain the onset of clinical symptoms. Video Abstract.


Assuntos
Microbiota , Infecções Urinárias , Disbiose , Humanos , Metagenoma , Metagenômica , Microbiota/genética , Infecções Urinárias/diagnóstico , Infecções Urinárias/microbiologia
3.
Microbiome ; 9(1): 149, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183047

RESUMO

BACKGROUND: Since the prolonged use of insecticidal proteins has led to toxin resistance, it is important to search for novel insecticidal protein genes (IPGs) that are effective in controlling resistant insect populations. IPGs are usually encoded in the genomes of entomopathogenic bacteria, especially in large plasmids in strains of the ubiquitous soil bacteria, Bacillus thuringiensis (Bt). Since there are often multiple similar IPGs encoded by such plasmids, their assemblies are typically fragmented and many IPGs are scattered through multiple contigs. As a result, existing gene prediction tools (that analyze individual contigs) typically predict partial rather than complete IPGs, making it difficult to conduct downstream IPG engineering efforts in agricultural genomics. METHODS: Although it is difficult to assemble IPGs in a single contig, the structure of the genome assembly graph often provides clues on how to combine multiple contigs into segments encoding a single IPG. RESULTS: We describe ORFograph, a pipeline for predicting IPGs in assembly graphs, benchmark it on (meta)genomic datasets, and discover nearly a hundred novel IPGs. This work shows that graph-aware gene prediction tools enable the discovery of greater diversity of IPGs from (meta)genomes. CONCLUSIONS: We demonstrated that analysis of the assembly graphs reveals novel candidate IPGs. ORFograph identified both already known genes "hidden" in assembly graphs and potential novel IPGs that evaded existing tools for IPG identification. As ORFograph is fast, one could imagine a pipeline that processes many (meta)genomic assembly graphs to identify even more novel IPGs for phenotypic testing than would previously be inaccessible by traditional gene-finding methods. While here we demonstrated the results of ORFograph only for IPGs, the proposed approach can be generalized to any class of genes. Video abstract.


Assuntos
Inseticidas , Algoritmos , Genômica , Metagenoma , Metagenômica
4.
Sci Adv ; 6(42)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33055169

RESUMO

In the honey bee, genetically related colony members innately develop colony-specific cuticular hydrocarbon profiles, which serve as pheromonal nestmate recognition cues. Yet, despite high intracolony relatedness, the innate development of colony-specific chemical signatures by individual colony members is largely determined by the colony environment, rather than solely relying on genetic variants shared by nestmates. Therefore, it is puzzling how a nongenic factor could drive the innate development of a quantitative trait that is shared by members of the same colony. Here, we provide one solution to this conundrum by showing that nestmate recognition cues in honey bees are defined, at least in part, by shared characteristics of the gut microbiome across individual colony members. These results illustrate the importance of host-microbiome interactions as a source of variation in animal behavioral traits.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Abelhas , Processos Grupais , Hidrocarbonetos , Reconhecimento Psicológico
5.
PLoS One ; 15(6): e0234537, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32574172

RESUMO

Plant-soil feedback studies attempt to understand the interplay between composition of plant and soil microbial communities. A growing body of literature suggests that plant species can coexist when they interact with a subset of the soil microbial community that impacts plant performance. Most studies focus on the microbial community in the soil rhizosphere; therefore, the degree to which the bacterial community within plant roots (root-endophytic compartment) influences plant-microbe interactions remains relatively unknown. To determine if there is an interaction between conspecific vs heterospecific soil microbes and plant performance, we sequenced root-endophytic bacterial communities of five tallgrass-prairie plant species, each reciprocally grown with soil microbes from each hosts' soil rhizosphere. We found evidence of plant-soil feedbacks for some pairs of plant hosts; however, the strength and direction of feedbacks varied substantially across plant species pairs-from positive to negative feedbacks. Additionally, each plant species harbored a unique subset of root-endophytic bacteria. Conspecifics that hosted similar bacterial communities were more similar in biomass than individuals that hosted different bacterial communities, suggesting an important functional link between root-endophytic bacterial community composition and plant fitness. Our findings suggest a connection between an understudied component of the root-endophytic microbiome and plant performance, which may have important implications in understanding plant community composition and coexistence.


Assuntos
Microbiota/genética , Desenvolvimento Vegetal/genética , Plantas/microbiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Endófitos/classificação , Endófitos/genética , Pradaria , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Plantas/genética , RNA Ribossômico 16S/genética , Rizosfera
6.
Sci Rep ; 9(1): 11764, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409850

RESUMO

The increase in antibiotic resistant bacteria has raised global concern regarding the future effectiveness of antibiotics. Human activities that influence microbial communities and environmental resistomes can generate additional risks to human health. In this work, we characterized aquatic microbial communities and their resistomes in samples collected at three sites along the Bogotá River and from wastewaters at three city hospitals, and investigated community profiles and antibiotic resistance genes (ARGs) as a function of anthropogenic contamination. The presence of antibiotics and other commonly used drugs increased in locations highly impacted by human activities, while the diverse microbial communities varied among sites and sampling times, separating upstream river samples from more contaminated hospital and river samples. Clinically relevant antibiotic resistant pathogens and ARGs were more abundant in contaminated water samples. Tracking of resistant determinants to upstream river waters and city sources suggested that human activities foster the spread of ARGs, some of which were co-localized with mobile genetic elements in assembled metagenomic contigs. Human contamination of this water ecosystem changed both community structure and environmental resistomes that can pose a risk to human health.


Assuntos
Resistência Microbiana a Medicamentos/genética , Atividades Humanas , Microbiota/efeitos dos fármacos , Microbiologia da Água , Poluentes Químicos da Água/toxicidade , Colômbia , Sedimentos Geológicos/microbiologia , Humanos , Rios
7.
Sci Rep ; 8(1): 14636, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279438

RESUMO

Microbiome disruptions triggering disease outbreaks are increasingly threatening corals worldwide. In the Tropical Eastern Pacific, a necrotic-patch disease affecting gorgonian corals (sea fans, Pacifigorgia spp.) has been observed in recent years. However, the composition of the microbiome and its disease-related disruptions remain unknown in these gorgonian corals. Therefore, we analysed 16S rRNA gene amplicons from tissues of healthy colonies (n = 19) and from symptomatic-asymptomatic tissues of diseased colonies (n = 19) of Pacifigorgia cairnsi (Gorgoniidae: Octocorallia) in order to test for disease-related changes in the bacterial microbiome. We found that potential endosymbionts (mostly Endozoicomonas spp.) dominate the core microbiome in healthy colonies. Moreover, healthy tissues differed in community composition and functional profile from those of the symptomatic tissues but did not show differences to asymptomatic tissues of the diseased colonies. A more diverse set of bacteria was observed in symptomatic tissues, together with the decline in abundance of the potential endosymbionts from the healthy core microbiome. Furthermore, according to a comparative taxonomy-based functional profiling, these symptomatic tissues were characterized by the increase in heterotrophic, ammonia oxidizer and dehalogenating bacteria and by the depletion of nitrite and sulphate reducers. Overall, our results suggest that the bacterial microbiome associated with the disease behaves opportunistically and is likely in a state of microbial dysbiosis. We also conclude that the confinement of the disease-related consortium to symptomatic tissues may facilitate colony recovery.


Assuntos
Antozoários/microbiologia , Bactérias/classificação , Bactérias/genética , Microbiota/genética , Animais , Oceano Pacífico , Filogenia , RNA Bacteriano , RNA Ribossômico 16S , Simbiose
8.
Ann N Y Acad Sci ; 1388(1): 42-58, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27768825

RESUMO

Microbial communities contain diverse bacteria that play important roles in every environment. Advances in sequencing and computational methodologies over the past decades have illuminated the phylogenetic and functional diversity of microbial communities from diverse habitats. Among the activities encoded in microbiomes are the abilities to synthesize and resist small molecules, yielding antimicrobial activity. These functions are of particular interest when viewed in light of the public health emergency posed by the increase in clinical antimicrobial resistance and the dwindling antimicrobial discovery and approval pipeline, and given the intimate ecological and evolutionary relationship between antimicrobial biosynthesis and resistance. Here, we review genomic and functional methods that have been developed for accessing the antimicrobial biosynthesis and resistance capacity of microbiomes and highlight outstanding examples of their applications.


Assuntos
Anti-Infecciosos , Resistência a Medicamentos/genética , Genômica/métodos , Microbiota/genética
9.
PeerJ ; 3: e1352, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528414

RESUMO

Interaction conditions can change the balance of cooperation and conflict in multicellular groups. After aggregating together, cells of the social amoeba Dictyostelium discoideum may migrate as a group (known as a slug) to a new location. We consider this migration stage as an arena for social competition and conflict because the cells in the slug may not be from a genetically homogeneous population. In this study, we examined the interplay of two seemingly diametric actions, the solitary action of kin recognition and the collective action of slug migration in D. discoideum, to more fully understand the effects of social competition on fitness over the entire lifecycle. We compare slugs composed of either genetically homogenous or heterogeneous cells that have migrated or remained stationary in the social stage of the social amoeba Dictyostelium discoideum. After migration of chimeric slugs, we found that facultative cheating is reduced, where facultative cheating is defined as greater contribution to spore relative to stalk than found for that clone in the clonal state. In addition our results support previous findings that competitive interactions in chimeras diminish slug migration distance. Furthermore, fruiting bodies have shorter stalks after migration, even accounting for cell numbers at that time. Taken together, these results show that migration can alleviate the conflict of interests in heterogeneous slugs. It aligns their interest in finding a more advantageous place for dispersal, where shorter stalks suffice, which leads to a decrease in cheating behavior.

10.
Methods Mol Biol ; 983: 113-24, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23494304

RESUMO

Dictyostelium discoideum is a commonly used model organism for the study of biological processes such as chemotaxis, cell communication, and development. While these studies primarily focus on a single clone, recent work has revealed a host of questions that can only be answered from studies of multiple genetically distinct clones. Understanding intraspecific clone conflict, kin recognition, differential adhesion, and other kinds of interactions likely to occur in the natural soil habitat can only come from studies of multiple clones. Studies of populations of wild isolates are also important for understanding the factors contributing to associations such as species co-occurrences and to observed inter- and intraspecific interactions such as those found between bacteria and D. discoideum. Natural isolates of Dictyostelium are easily found in soil and leaf litter in nearly all habitats. Here we describe a simple and successful method for isolating new wild clones from soil, then isolating single clonal strains, and storing them for future use.


Assuntos
Dictyostelium/isolamento & purificação , Microbiologia do Solo , Meios de Cultura , Técnicas de Cultura , Dictyostelium/fisiologia , Enterobacter aerogenes , Esporos de Protozoários/isolamento & purificação , Esporos de Protozoários/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa