Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Semin Cancer Biol ; 86(Pt 2): 860-872, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35115226

RESUMO

It has become necessary to accept the clinical reality of therapeutic agents targeting the cancer-associated immune system. In recent decades, several investigations have highlighted the role of inflammation in cancer development. It has now been recognized that inflammatory cells secrete mediators, including enzymes, chemokines, and cytokines. These secreted substances produce an inflammatory microenvironment that is critically involved in cancer growth. Inflammation may enhance genomic instability leading to DNA damage, activation of oncogenes, or compromised tumor suppressor activity, all of which may promote various phases of carcinogenesis. Conventional cancer treatment includes surgery, radiation, and chemotherapy. However, treatment failure occurs because current strategies are unable to achieve complete local control due to metastasis. Nanoparticles (NPs) are a broad spectrum of drug carriers typically below the size of 100 nm, targeting tumor sites while reducing off-target consequences. More importantly, NPs can stimulate innate and adaptive immune systems in the tumor microenvironment (TME); hence, they induce a cancer-fighting immune response. Strikingly, targeting cancer cells with NPs helps eliminate drug resistance and tumor recurrence, as well as prevents inflammation. Throughout this review, we provide recent data on the role of inflammation in cancer and explore nano-therapeutic initiatives to target significant mediators, for example, nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukins (ILs) associated with cancer-related inflammation, to escort the immunomodulators to cancer cells and associated systemic compartments. We also highlight the necessity of better identifying inflammatory pathways in cancer pathophysiology to develop effective treatment plans.


Assuntos
Nanopartículas , Neoplasias , Humanos , Sistemas de Liberação de Fármacos por Nanopartículas , Recidiva Local de Neoplasia , Neoplasias/patologia , NF-kappa B/metabolismo , Inflamação/metabolismo , Microambiente Tumoral
2.
Mol Biol Rep ; 50(5): 4357-4366, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36943605

RESUMO

BACKGROUND: Harmaline is a ß-carboline alkaloid that can be extracted from the seeds of Peganum harmala. Harmaline has been shown to exhibit a potent cytotoxic effect against tumor cells. In this study, the anti-glioblastoma activity of harmaline was investigated in vitro. METHODS AND RESULTS: Cell viability, apoptosis, and cell cycle arrest were assessed in U-87 cells treated with harmaline at different doses. Reactive oxygen species (ROS) generation and the mRNA expression of apoptosis-associated genes were assessed. The anti-metastatic effect of harmaline on U-87 cells was evaluated by gelatin zymography assay where matrix metalloproteinase [MMP]-2/-9 enzymatic activity was measured, and the scratch assay was used to assess migratory responses. Flow cytometry demonstrated that harmaline could suppress the proliferation and induce sub-G1 cell cycle arrest and apoptotic cell death in glioblastoma cells. Harmaline treatment was also associated with an upregulation of the cell cycle-related genes, p21 and p53, and pro-apoptotic Bax, as well as the induction of ROS. The zymography assay indicated that the essential steps of metastasis were potently suppressed by harmaline through inhibiting the expression of MMP-2 and - 9. In addition, the migration of U-87 cells was significantly reduced after harmaline treatment. CONCLUSION: Our data suggest a basis for further research of harmaline which has potential cytotoxic activities in glioblastoma cells; inducing cell cycle arrest and apoptosis, repression of migration, possibly invasion, and metastasis.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Harmalina/farmacologia , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/farmacologia , Antineoplásicos/farmacologia , Glioblastoma/tratamento farmacológico , Apoptose , Proliferação de Células
3.
J Biochem Mol Toxicol ; 37(12): e23486, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37555500

RESUMO

Osteosarcoma (OS) is the most prevalent primary bone cancer, with a high morbidity and mortality rate. Over the past decades, therapeutic approaches have not considerably improved patients' survival rates, and further research is required to find efficient treatments for OS. Data from several studies have shown that urolithin B (UB), the intestinal metabolite of polyphenolic ellagitannins, is emerging as a new class of anticancer compounds, yet its effect on OS cancer cells remains elusive. Herein, we investigated UB's antimetastatic, antiproliferative, and apoptotic effects on the MG-63 OS cell line. Cell viability assay, annexin V/propidium iodide staining, cell cycle arrest analysis, determination of the gene expression of MMP-2, MMP-9, Bax, Bcl-2, and p53 messenger RNA (mRNA), evaluation of reactive oxygen species (ROS) generation and migration, and MMP-2 and MMP-9 protein expression assessments were performed. UB caused late apoptosis, necrosis, G2/M arrest, and ROS generation in MG-63 cells. It increased the mRNA expression of the p53 tumor suppressor and Bax proapoptotic genes. UB also inhibited the migration and metastatic behavior of MG-63 OS cells by downregulating mRNA and MMP-2 and MMP-9 protein expression. In general, although further in vivo investigations are warranted, the current results showed that UB might be utilized as a potential novel natural compound for OS therapy due to its nontoxic, antiproliferative, and antimetastatic nature.


Assuntos
Apoptose , Osteossarcoma , Humanos , Proteína Supressora de Tumor p53 , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Linhagem Celular Tumoral , Necrose , Proliferação de Células , Osteossarcoma/metabolismo , RNA Mensageiro , Movimento Celular
4.
Altern Lab Anim ; 51(1): 30-38, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36550678

RESUMO

The pathological accumulation of quinolinic acid (QA) is often associated with neuritis and neuronal cell death in several neurodegenerative diseases, through the overproduction of free radicals. Urolithin B and auraptene have been reported to exert potent antioxidant effects - however, little is known about the protective effects of these compounds against QA-induced neurotoxicity. Therefore, this study aimed to explore the in vitro protective effects of urolithin B and auraptene against QA-induced neurotoxicity in the SH-SY5Y neuroblastoma cell line. The MTT assay was used to evaluate cell viability, and flow cytometry was carried out to evaluate effects on the cell cycle and apoptosis. The intracellular levels of reactive oxygen species (ROS) were also determined. Our findings showed that auraptene at non-toxic concentrations had no protective effect on QA-induced toxicity. However, urolithin B at concentrations of 0.6 µM and 2.5 µM enhanced the viability of cells treated with QA. Moreover, while the percentage of apoptotic cells (i.e. in the sub-G1 phase) was shown to significantly increase after QA treatment, pre-treatment with urolithin B reduced the number of these apoptotic cells. Furthermore, urolithin B, as an antioxidant, also significantly reduced QA-induced ROS production. Our findings suggest that urolithin B may possess potent antioxidant and neuroprotective effects against QA-induced neurotoxicity that merit further investigation.


Assuntos
Antioxidantes , Neuroblastoma , Humanos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ácido Quinolínico/farmacologia , Linhagem Celular Tumoral , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Apoptose , Sobrevivência Celular , Estresse Oxidativo/fisiologia
5.
Semin Cancer Biol ; 73: 116-133, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32814114

RESUMO

Evidence from preclinical studies suggests that the competitive HMG-CoA reductase (HMGCR) inhibitors universally known as 'statins,' in addition to being powerful drugs that reduce cholesterol and improve cardiovascular risk, also have promising antitumor properties. Statins appear to enhance the treatment outcome of various cancers before and concurrent with other cancer treatment interventions. Glioblastoma multiforme (GBM), a particularly invasive cerebral tumor associated with high mortality, holds a poor median overall survival (OS) of around one year after surgical resection followed by concurrent radiation and chemotherapy. Recently, statins have increasingly appeared as potential adjuvant drugs for the treatment of GBM because of their potential to suppress cell growth, survival, migration, metastasis, inflammation, angiogenesis, and promote apoptosis during both in vitro and in vivo studies. However, the clinical outcomes of statins on the survival of patients with GBM are still controversial. This study aims to review and address some of the documented effects of statin drugs when focusing entirely on cancer treatment, especially GBM, including concurrent statin therapy with chemotherapeutic agents.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/efeitos dos fármacos , Glioblastoma/patologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Animais , Antineoplásicos/farmacologia , Humanos
6.
Mol Biol Rep ; 49(10): 9307-9314, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35960409

RESUMO

BACKGROUND: Substance P (SP) has a crucial role in cancer initiation and progression via binding to its specific receptor (NK1R). Various evidence confirmed the overexpression of NK1R and SP in the tissue of multiple cancers, including ovarian cancer. Despite numerous studies, the mechanism of the SP/NK1R system on migration and angiogenesis of ovarian cancer cells has not yet been deciphered. In this study, considering the critical factors in cell migration (MMP-2, MMP-9) and angiogenesis (VEGF, VEGFR), we investigated the possible mechanism of this system in inducing migration and angiogenesis of ovarian cancer cells. METHODS AND RESULTS: First, the resazurin assay was conducted to evaluate the cytotoxic effect of aprepitant (NK1R antagonist) on the viability of A2780 ovarian cancer cells. After that, the impact of this system and aprepitant on the mRNA expression of the factors mentioned above were studied using RT-PCR. Besides, the scratch assay was performed to confirm the effect of the SP/NK-1R system and aprepitant on cell migration. Our results implied that this system induced cell migration and angiogenesis by increasing the mRNA expression of MMP-2, MMP-9, VEGF, and VEGFR. The obtained results from the scratch assay also confirmed the positive effect of this system on cell migration. Meanwhile, the blocking of NK1R by aprepitant suppresses the SP effects on cell migration and angiogenesis. CONCLUSIONS: Overall, the SP/NK1R system plays a vital role in ovarian cancer progression, and the inhibition of NK1Rusing aprepitant could inhibit the spread of ovarian cancer cells through metastasis and angiogenesis.


Assuntos
Neoplasias Ovarianas , Substância P , Aprepitanto/farmacologia , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Feminino , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , RNA Mensageiro , Receptores da Neurocinina-1/genética , Receptores da Neurocinina-1/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular , Substância P/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética
7.
Mol Biol Rep ; 49(10): 9623-9632, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35997850

RESUMO

BACKGROUND: Thymol (2-isopropyl-5-methylphenol) is a colorless crystalline derivative of cymene, that possesses pleotropic pharmacological properties, including analgesic, antibacterial, antispasmodic, and anti-inflammatory activities. Thymol has also been recognized for its beneficial effect as an anti-tumor agent, but the precise mechanism for this has not been fully elucidated. We aimed to identifying whether thymol exerts anti-cancer activity in human U-87 malignant glioblastoma (GB) cells (U-87). METHODS AND RESULTS: Cell viability and apoptosis was evaluated in U-87 cells treated with thymol at different concentrations. Reactive oxygen species (ROS) production, mRNA expressions of apoptosis-related genes and cell cycle characteristics were assessed. The cytotoxic activity of the co-exposure of thymol and temozolomide (TMZ) was also evaluated. The half-maximal inhibitory concentration (IC50) of thymol in the U-87 cells was 230 µM assessed at 24 h after exposure. Thymol did not exhibit any cytotoxic effects on normal L929 cells at this concentration. Thymol treatment increased the expression of Bax and p53, and also increased apoptotic cell death, and excessive generation of ROS. Moreover, the cytotoxic activity of thymol on the U-87 cells may be related to the arrest of the cell cycle at the G0/G1 interface. Combination therapy showed that the cytotoxic effects of thymol synergized with TMZ, and combined treatment had more cytotoxic potential compared to either of the agents alone. CONCLUSIONS: Our data indicate the potential cytotoxic activities of thymol on U-87 cells. Further studies are required to evaluate the spectrum of the antitumor activity of thymol on GB cells.


Assuntos
Antineoplásicos , Glioblastoma , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Cimenos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Parassimpatolíticos/farmacologia , Parassimpatolíticos/uso terapêutico , RNA Mensageiro , Espécies Reativas de Oxigênio/metabolismo , Temozolomida/farmacologia , Timol/farmacologia , Timol/uso terapêutico , Proteína Supressora de Tumor p53 , Proteína X Associada a bcl-2/metabolismo
8.
Int J Toxicol ; 41(5): 402-411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719111

RESUMO

Colorectal cancer (CRC) is the second cause of cancer-associated death globally. Recently, herbal medicinal products and, in particular, zerumbone have been widely studied and used for cancer treatment as they induce significant anti-cancer effects. However, there is limited information about the anti-cancer effects of zerumbone in CRC. Therefore, we aimed to investigate the in vitro anti-cancer effects of the zerumbone in CRC, focusing on cell apoptosis and migration. Anti-proliferative and anti-migratory effects of zerumbone on HT-29 cells were evaluated using MTT and scratch wound healing assay, respectively. Quantitative real-time PCR (qRT-PCR) was performed to determine the mRNA expression levels of migration and apoptosis-related genes. Apoptosis and cell cycle distribution were evaluated by flow cytometry. The intracellular level of reactive oxygen species (ROS) was measured using a ROS assay kit. Additionally, matrix metalloproteinase-2/-9 (MMP-2/-9) activity was determined using gelatin zymography. Zerumbone suppressed the viability of the HT-29 cells dose-dependently while having less cytotoxicity on normal NIH/3T3 cells. Zerumbone induced apoptosis in HT-29 cells and arrested the cell cycle in the G2/M phase. These effects were associated with alteration in the expression of apoptosis-related genes (up-regulation of Bax and down-regulation of Bcl-2 genes). Zerumbone also enhanced the generation of ROS in HT-29 cells. Furthermore, zerumbone significantly inhibited the migration of HT-29 cells and decreased MMP-2/-9 mRNA expression and activity. Our findings provide a potential use for zerumbone to induce apoptosis and suppress metastasis in HT-29 cells; thus, it could be developed as a promising natural agent for future CRC therapy.


Assuntos
Neoplasias Colorretais , Metaloproteinase 2 da Matriz , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Células HT29 , Humanos , Metaloproteinase 2 da Matriz/farmacologia , Camundongos , RNA Mensageiro , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos
9.
Mol Biol Rep ; 47(3): 2253-2263, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32072401

RESUMO

One of the most prevalent malignancies is esophageal squamous cell carcinoma (ESCC), which is associated with high morbidity and mortality. Substance P (SP), as one of the peptides released from sensory nerves, causes the enhancement of cellular excitability through the activation of the neurokinin-1 (NK1) receptor in several human tumor cells. Aprepitant, a specific, potent, and long-acting NK1 receptor antagonist, is considered as a novel agent to inhibit proliferation and induce apoptosis in malignant cells. Since the antitumor mechanism of aprepitant in ESCC is not completely understood, we conducted this study and found that aprepitant induced growth inhibition of KYSE-30 cells and arrested cells in the G2/M phase of the cell cycle. Aprepitant also caused apoptotic cell death and inhibited activation of the PI3K/Akt axis and its downstream effectors, including NF-κB in KYSE-30 cells. Besides, quantitative real-time (qRT)-PCR analysis showed a significant down-regulation of NF-κB target genes in KYSE-30 cells, indicating a probable NF-κB-dependent mechanism involved in aprepitant cytotoxicity. Thus, the present study recommends that SP/NK1R system might, therefore, be considered as an emerging and promising therapeutic strategy against ESCC.


Assuntos
Carcinoma de Células Escamosas do Esôfago/etiologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores da Neurocinina-1/metabolismo , Transdução de Sinais , Apoptose/efeitos dos fármacos , Compostos Azo , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Suscetibilidade a Doenças , Carcinoma de Células Escamosas do Esôfago/patologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Ésteres do Ácido Sulfúrico
11.
Cancer Lett ; 593: 216955, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38750720

RESUMO

Brain cancers, particularly glioblastoma multiforme (GBM), are challenging health issues with frequent unmet aspects. Today, discovering safe and effective therapeutic modalities for brain tumors is among the top research interests. Immunotherapy is an emerging area of investigation in cancer treatment. Since immune checkpoints play fundamental roles in repressing anti-cancer immunity, diverse immune checkpoint inhibitors (ICIs) have been developed, and some monoclonal antibodies have been approved clinically for particular cancers; nevertheless, there are significant concerns regarding their efficacy and safety in brain tumors. Among the various tools to modify the immune checkpoints, phytochemicals show good effectiveness and excellent safety, making them suitable candidates for developing better ICIs. Phytochemicals regulate multiple immunological checkpoint-related signaling pathways in cancer biology; however, their efficacy for clinical cancer immunotherapy remains to be established. Here, we discussed the involvement of immune checkpoints in cancer pathology and summarized recent advancements in applying phytochemicals in modulating immune checkpoints in brain tumors to highlight the state-of-the-art and give constructive prospects for future research.


Assuntos
Neoplasias Encefálicas , Inibidores de Checkpoint Imunológico , Compostos Fitoquímicos , Humanos , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Imunoterapia/métodos , Glioblastoma/tratamento farmacológico , Glioblastoma/imunologia , Transdução de Sinais/efeitos dos fármacos , Animais
12.
Prog Mol Biol Transl Sci ; 204: 133-161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38458736

RESUMO

Despite the extensive advancements made in the field of cancer therapy, the outlook of individuals suffering from glioblastoma multiforme remains highly detrimental. The absence of specific treatments for cancerous cells significantly hinders the effectiveness of conventional anticancer techniques. Multiple research studies have demonstrated that the suppression of specific genes or the augmentation of therapeutic proteins through RNA-based therapeutics may represent a valuable approach when combined with chemotherapy or immunotherapy. In recent years, there has been a significant increase in the application of RNA therapeutics in conjunction with chemotherapy and immunotherapy. This emerging field has become a prominent area of research for advancing various types of cancer treatments. The present investigation provides an in-depth overview of the classification and application of RNA therapy, focusing on the mechanisms of RNA antitumor treatment and the current status of clinical studies on RNA drugs.


Assuntos
Glioblastoma , Glioma , Humanos , RNA , Glioma/genética , Glioma/terapia , Glioma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Imunoterapia/métodos
13.
Prog Mol Biol Transl Sci ; 204: 177-218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38458738

RESUMO

Liposomal drug delivery systems stand as versatile therapeutic platforms for precisely targeting related elements in cancerous tissues owing to their intrinsic passive and acquired active targeting capabilities and exceptional compatibility with physiologic environments. When the capacity of liposomes as nanocarriers is combined with the revolutionary potential of RNA therapies in affecting undruggable targets, the outcome would be promising drug candidates as game-changers in the cancer treatment arena. However, optimizing liposome composition, physicochemical properties, and surface chemistry is paramount to maximizing their pharmacokinetic and pharmacodynamic attributes. This review highlighted the potential of liposomes as nanovehicles for RNA therapeutics through a literature review and looked at the most recent preclinical and clinical advancements in utilizing liposomal RNA therapeutics for cancer management. Notably, the discovery of novel targets, advancements in liposome engineering, and organizing well-planned clinical trials would help uncover the incredible potential of these nanotherapeutics in cancer patients.


Assuntos
Lipossomos , Neoplasias , Humanos , Lipossomos/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico
14.
Int Immunopharmacol ; 126: 111055, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37992445

RESUMO

There are increasing incidences and mortality rates for colorectal cancer in the world. It is common for chemotherapy and radiation given to patients with colorectal cancer to cause toxicities that limit their effectiveness and cause cancer cells to become resistant to these treatments. Additional targeted treatments are needed to improve patient's quality of life and outcomes. Immunotherapy has rapidly emerged as an incredibly exciting and promising avenue for cancer treatment in recent years. This innovative approach provides novel options for tackling solid tumors, effectively establishing itself as a new cornerstone in cancer treatment. Specifically, in the realm of colorectal cancer (CRC), there is great promise in developing new drugs that target immune checkpoints, offering a hopeful and potentially transformative solution. While immunotherapy of CRC has made significant advances, there are still obstacles and limitations. CRC patients have a poor response to treatment because of the immune-suppressing function of their tumor microenvironment (TME). In addition to blocking inhibitory immune checkpoints, checkpoint-blocking antibodies may also boost immune responses against tumors. The review summarizes recent advances in immune checkpoint inhibitors (ICIs) for CRC, including CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3.


Assuntos
Neoplasias Colorretais , Qualidade de Vida , Humanos , Imunoterapia , Neoplasias Colorretais/terapia , Microambiente Tumoral
16.
J Funct Biomater ; 14(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37623653

RESUMO

Standard cancer chemotherapeutics often produce significant adverse effects and eventually lose their effectiveness due to the emergence of resistance mechanisms. As a result, patients with malignant tumors experience a poor quality of life and a short lifespan. Thus, combination medication regimens provide various advantages, including increased success rate, fewer side effects, and fewer occurrences of resistance. Curcumin (Cur), a potential phytochemical from turmeric, when coupled with traditional chemotherapeutics, has been established to improve the effectiveness of cancer treatment in clinical and preclinical investigations. Cur not only exerts multiple mechanisms resulting in apoptotic cancer cell death but also reduces the resistance to standard chemotherapy drugs, mainly through downregulating the multi-drug resistance (MDR) cargoes. Recent reports showed the beneficial outcomes of Cur combination with many chemotherapeutics in various malignancies. Nevertheless, owing to the limited bioavailability, devising co-delivery strategies for Cur and conventional pharmaceuticals appears to be required for clinical settings. This review summarized various Cur combinations with standard treatments as cancer therapeutics.

17.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166720, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37062453

RESUMO

Discovering novel cancer therapies has attracted extreme interest in the last decade. In this regard, multidrug resistance (MDR) to chemotherapies is a key challenge in cancer treatment. Cancerous cells are growingly become resistant to existing chemotherapeutics by employing diverse mechanisms, highlighting the significance of discovering approaches to overcome MDR. One promising strategy is utilizing aptamers as unique tools to target elements or signaling pathways incorporated in resistance mechanisms, or develop actively targeted drug delivery systems or chimeras enabling the precise delivery of novel agents to inhibit the conventionally undruggable resistance elements. Furthermore, due to their advantages over their proteinaceous counterparts, particularly antibodies, including improved targeting action, enhanced thermal stability, easier production, and superior tumor penetration, aptamers are emerging and have frequently been considered for developing cancer therapeutics. Here, we highlighted significant chemoresistance pathways in cancer and discussed the use of aptamers as prospective tools to surmount cancer MDR.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
18.
Med Oncol ; 40(11): 331, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838642

RESUMO

The most common primary brain malignancy, glioblastoma multiforme, is tremendously resistant to conventional treatments due to its potency for metastasis to surrounding brain tissue. Temozolomide is a chemotherapeutic agent that currently is administrated during the treatment procedure. Studies have attempted to investigate new agents with higher effectiveness and fewer side effects. Combretastatin A-4 (CA-4), a natural compound derived from Combretum caffrum, has been recently considered for its potent antitumor activities in a wide variety of preclinical solid tumor models. Our findings have shown that CA-4 exerts potent anti-proliferative and apoptotic effects on glioma cells, and ROS generation may be involved in these cellular events. CA-4 has imposed G2 arrest in U-87 cells. We also observed that CA-4 significantly reduced the migration and invasion capability of U-87 cells. Furthermore, the gene expression and enzyme activity of MMP-2 and MMP-9 were significantly inhibited in the presence of CA-4. We also observed a considerable decrease in PI3K and Akt protein expression following treatment with CA-4. In conclusion, our findings showed significant apoptogenic and anti-metastatic effects of CA-4 on glioma cells and also suggested that the PI3K/Akt/MMP-2/-9 and also ROS pathway might play roles in these cellular events.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio , Proliferação de Células , Glioma/patologia , Apoptose , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral
19.
Biofactors ; 49(4): 782-819, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37162294

RESUMO

Regarding the multimechanistic nature of cancers, current chemo- or radiotherapies often fail to eradicate disease pathology, and frequent relapses or resistance to therapies occur. Brain malignancies, particularly glioblastomas, are difficult-to-treat cancers due to their highly malignant and multidimensional biology. Unfortunately, patients suffering from malignant tumors often experience poor prognoses and short survival periods. Thus far, significant efforts have been conducted to discover novel and more effective modalities. To that end, modulation of the ubiquitin-proteasome system (UPS) has attracted tremendous interest since it affects the homeostasis of proteins critically engaged in various cell functions, for example, cell metabolism, survival, proliferation, and differentiation. With their safe and multimodal actions, phytochemicals are among the promising therapeutic tools capable of turning the operation of various UPS elements. The present review, along with an updated outline of the role of UPS dysregulation in multiple cancers, provided a detailed discussion on the impact of phytochemicals on the UPS function in malignancies, especially brain tumors.


Assuntos
Neoplasias Encefálicas , Ubiquitina , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
20.
J Trace Elem Med Biol ; 78: 127186, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37148696

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive kind of malignant primary brain tumor in humans. Given the limitation of Conventional therapeutic strategy, the development of nanotechnology and natural product therapy seems to be an effective method enhancing the prognosis of GBM patients. In this research, cell viability, mRNA expressions of various apoptosis-related genes apoptosis, and generation of reactive oxygen species (ROS) in human U-87 malignant GBM cell line (U87) treated with Urolithin B (UB) and CeO2-UB. Unlike CeO2-NPs, both UB and CeO2-UB caused a dose-dependent decrease in the viability of U87 cells. The half-maximal inhibitory concentration values of UB and CeO2-UB were 315 and 250 µM after 24 h, respectively. Moreover, CeO2-UB exerted significantly higher effects on U87 viability, P53 expression, and ROS generation. Furthermore, UB and CeO2-UB increased the accumulation of U87 cells in the SUB-G1 population, decreased the expression of cyclin D1, and increased the Bax/Bcl2 ratio expression. Collectively, these data indicate that CeO2-UB exhibited more substantial anti-GBM effects than UB. Although further in vivo investigations are needed, these results proposed that CeO2-NPs could be utilized as a potential novel anti-GBM agent after further studies.


Assuntos
Glioblastoma , Nanopartículas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Glioblastoma/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa