Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nat Methods ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744918

RESUMO

The combination of native electrospray ionization with top-down fragmentation in mass spectrometry (MS) allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and cofactors. Although this approach is powerful, both native MS and top-down MS are not yet well standardized, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics initiated a study to develop and test protocols for native MS combined with top-down fragmentation of proteins and protein complexes across 11 instruments in nine laboratories. Here we report the summary of the outcomes to provide robust benchmarks and a valuable entry point for the scientific community.

2.
PLoS Biol ; 22(1): e3002462, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289969

RESUMO

Mutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment. We hypothesized that cyclic thiosulfinate cross-linkers, which selectively target a rare, 2 cysteine-containing motif, can stabilize fALS-causing SOD1 variants in vivo. We created a library of chemically diverse cyclic thiosulfinates and determined structure-cross-linking-activity relationships. A pre-lead compound, "S-XL6," was selected based upon its cross-linking rate and drug-like properties. Co-crystallographic structure clearly establishes the binding of S-XL6 at Cys 111 bridging the monomers and stabilizing the SOD1 dimer. Biophysical studies reveal that the degree of stabilization afforded by S-XL6 (up to 24°C) is unprecedented for fALS, and to our knowledge, for any protein target of any kinetic stabilizer. Gene silencing and protein degrading therapeutic approaches require careful dose titration to balance the benefit of diminished fALS SOD1 expression with the toxic loss-of-enzymatic function. We show that S-XL6 does not share this liability because it rescues the activity of fALS SOD1 variants. No pharmacological agent has been proven to bind to SOD1 in vivo. Here, using a fALS mouse model, we demonstrate oral bioavailability; rapid engagement of SOD1G93A by S-XL6 that increases SOD1G93A's in vivo half-life; and that S-XL6 crosses the blood-brain barrier. S-XL6 demonstrated a degree of selectivity by avoiding off-target binding to plasma proteins. Taken together, our results indicate that cyclic thiosulfinate-mediated SOD1 stabilization should receive further attention as a potential therapeutic approach for fALS.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Cisteína/genética , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética
3.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33653954

RESUMO

Ras dimerization is critical for Raf activation. Here we show that the Ras binding domain of Raf (Raf-RBD) induces robust Ras dimerization at low surface densities on supported lipid bilayers and, to a lesser extent, in solution as observed by size exclusion chromatography and confirmed by SAXS. Community network analysis based on molecular dynamics simulations shows robust allosteric connections linking the two Raf-RBD D113 residues located in the Galectin scaffold protein binding site of each Raf-RBD molecule and 85 Å apart on opposite ends of the dimer complex. Our results suggest that Raf-RBD binding and Ras dimerization are concerted events that lead to a high-affinity signaling complex at the membrane that we propose is an essential unit in the macromolecular assembly of higher order Ras/Raf/Galectin complexes important for signaling through the Ras/Raf/MEK/ERK pathway.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas p21(ras)/química , Quinases raf/química , Galectinas/química , Galectinas/genética , Galectinas/metabolismo , Humanos , Domínios Proteicos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases raf/genética , Quinases raf/metabolismo
4.
Bioinformatics ; 38(7): 2015-2021, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35040929

RESUMO

MOTIVATION: Mass spectrometry imaging (MSI) provides rich biochemical information in a label-free manner and therefore holds promise to substantially impact current practice in disease diagnosis. However, the complex nature of MSI data poses computational challenges in its analysis. The complexity of the data arises from its large size, high-dimensionality and spectral nonlinearity. Preprocessing, including peak picking, has been used to reduce raw data complexity; however, peak picking is sensitive to parameter selection that, perhaps prematurely, shapes the downstream analysis for tissue classification and ensuing biological interpretation. RESULTS: We propose a deep learning model, massNet, that provides the desired qualities of scalability, nonlinearity and speed in MSI data analysis. This deep learning model was used, without prior preprocessing and peak picking, to classify MSI data from a mouse brain harboring a patient-derived tumor. The massNet architecture established automatically learning of predictive features, and automated methods were incorporated to identify peaks with potential for tumor delineation. The model's performance was assessed using cross-validation, and the results demonstrate higher accuracy and a substantial gain in speed compared to the established classical machine learning method, support vector machine. AVAILABILITY AND IMPLEMENTATION: https://github.com/wabdelmoula/massNet. The data underlying this article are available in the NIH Common Fund's National Metabolomics Data Repository (NMDR) Metabolomics Workbench under project id (PR001292) with http://dx.doi.org/10.21228/M8Q70T. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , Neoplasias , Animais , Camundongos , Espectrometria de Massas/métodos , Metabolômica/métodos , Aprendizado de Máquina , Neoplasias/diagnóstico por imagem
5.
Nat Methods ; 16(7): 587-594, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31249407

RESUMO

One gene can give rise to many functionally distinct proteoforms, each of which has a characteristic molecular mass. Top-down mass spectrometry enables the analysis of intact proteins and proteoforms. Here members of the Consortium for Top-Down Proteomics provide a decision tree that guides researchers to robust protocols for mass analysis of intact proteins (antibodies, membrane proteins and others) from mixtures of varying complexity. We also present cross-platform analytical benchmarks using a protein standard sample, to allow users to gauge their proficiency.


Assuntos
Benchmarking , Espectrometria de Massas/métodos , Proteínas/química , Desnaturação Proteica , Processamento de Proteína Pós-Traducional , Proteômica
6.
Anal Chem ; 93(16): 6355-6362, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33844516

RESUMO

A major limitation of intact protein fragmentation is the lack of sequence coverage within proteins' interiors. We show that collisionally activated dissociation (CAD) produces extensive internal fragmentation within proteins' interiors that fill the existing gaps in sequence coverage, including disulfide loop regions that cannot be characterized using terminal fragments. A barrier to the adoption of internal fragments is the lack of methods for their generation and assignment. To provide these, we explore the effects of protein size, mass accuracy, internal fragment size, CAD activation energy, and data preprocessing upon the production and identification of internal fragments. We also identify and mitigate the major source of ambiguity in internal fragment identification, which we term "frameshift ambiguity." Such ambiguity results from sequences containing any "middle" portion surrounded by the same composition on both termini, which upon fragmentation can produce two internal fragments of identical mass, yet out of frame by one or more amino acids (e.g., TRAIT producing TRAI or RAIT). We show that such instances permit the a priori assignment of the middle sequence portion. This insight and our optimized methods permit the unambiguous assignment of greater than 97% of internal fragments using only the accurate mass. We show that any remaining ambiguity in internal fragment assignment can be removed by consideration of fragmentation propensities or by (pseudo)-MS3. Applying these methods resulted in a 10-fold and 43-fold expanded number of identified ions, and a concomitant 7- and 16-fold increase in fragmentation sites, respectively, for native and reduced forms of a disease-associated SOD1 variant.

7.
Bioconjug Chem ; 32(3): 584-594, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33606505

RESUMO

We recently reported that cyclic thiosulfinates are cysteine selective cross-linkers that avoid the "dead-end" modifications that contribute to other cross-linkers' toxicity. In this study, we generalize the chemistry of cyclic thiosulfinates to that of thiol selective cross-linking and apply them to the synthesis of hydrogels. Thiol-functionalized four-arm poly(ethylene glycol) and hyaluronic acid monomers were cross-linked with 1,2-dithiane-1-oxide to form disulfide cross-linked hydrogels within seconds. The synthesized hydrogel could be reduced with physiological concentrations of glutathione, which modulated hydrogel mechanical properties and degradation kinetics. Bovine serum albumin protein was successfully encapsulated in hydrogel, and diffusion-mediated release was demonstrated in vitro. Hep G2 cells grew in the presence of preformed hydrogel and during hydrogel synthesis, demonstrating acceptable cytotoxicity. We encapsulated cells within a hydrogel and demonstrated cell growth and recovery up to 10 days, with and without cell adhesion peptides. In summary, we report cyclic thiosulfinates as a novel class of cross-linkers for the facile synthesis of biodegradable hydrogels.


Assuntos
Reagentes de Ligações Cruzadas/química , Dissulfetos/química , Hidrogéis/síntese química , Compostos de Sulfidrila/química , Ácido Hialurônico/química , Reologia
8.
Nat Chem Biol ; 14(3): 206-214, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29443976

RESUMO

Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA- and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry-based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, "How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?" We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype.


Assuntos
Genoma Humano , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteoma/química , Proteômica/métodos , Bases de Dados de Proteínas , Humanos , Espectrometria de Massas , Fenótipo , Biossíntese de Proteínas , Isoformas de Proteínas/química , Ubiquitina/química
9.
Anal Chem ; 91(6): 3810-3817, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30839199

RESUMO

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) provides a unique in situ chemical profile that can include drugs, nucleic acids, metabolites, lipids, and proteins. MSI of individual cells (of a known cell type) affords a unique insight into normal and disease-related processes and is a prerequisite for combining the results of MSI and other single-cell modalities (e.g. mass cytometry and next-generation sequencing). Technological barriers have prevented the high-throughput assignment of MSI spectra from solid tissue preparations to their cell type. These barriers include obtaining a suitable cell-identifying image (e.g. immunohistochemistry) and obtaining sufficiently accurate registration of the cell-identifying and MALDI-MS images. This study introduces a technique that overcame these barriers by assigning cell type directly from mass spectra. We hypothesized that, in MSI from mice with a defined fluorescent protein expression pattern, the fluorescent protein's molecular ion could be used to identify cell cohorts. A method was developed for the purification of enhanced yellow fluorescent protein (EYFP) from mice. To determine EYFP's molecular mass for MSI studies, we performed intact mass analysis and characterized the protein's primary structure and post-translational modifications through various techniques. MALDI-MSI methods were developed to enhance the detection of EYFP in situ, and by extraction of EYFP's molecular ion from MALDI-MS images, automated, whole-image assignment of cell cohorts was achieved. This method was validated using a well-characterized mouse line that expresses EYFP in motor and sensory neurons and should be applicable to hundreds of commercially available mice (and other animal) strains comprising a multitude of cell-specific fluorescent labels.


Assuntos
Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Imagem Molecular/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Camundongos , Peso Molecular , Neurônios/metabolismo
10.
Anal Chem ; 91(9): 6206-6216, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30932478

RESUMO

Multimodal integration between mass spectrometry imaging (MSI) and radiology-established modalities such as magnetic resonance imaging (MRI) would allow the investigations of key questions in complex biological systems such as the central nervous system. Such integration would provide complementary multiscale data to bridge the gap between molecular and anatomical phenotypes, potentially revealing new insights into molecular mechanisms underlying anatomical pathologies presented on MRI. Automatic coregistration between 3D MSI/MRI is a computationally challenging process due to dimensional complexity, MSI data sparsity, lack of direct spatial-correspondences, and nonlinear tissue deformation. Here, we present a new computational approach based on stochastic neighbor embedding to nonlinearly align 3D MSI to MRI data, identify and reconstruct biologically relevant molecular patterns in 3D, and fuse the MSI datacube to the MRI space. We demonstrate our method using multimodal high-spectral resolution matrix-assisted laser desorption ionization (MALDI) 9.4 T MSI and 7 T in vivo MRI data, acquired from a patient-derived, xenograft mouse brain model of glioblastoma following administration of the EGFR inhibitor drug of Erlotinib. Results show the distribution of some identified molecular ions of the EGFR inhibitor erlotinib, a phosphatidylcholine lipid, and cholesterol, which were reconstructed in 3D and mapped to the MRI space. The registration quality was evaluated on two normal mouse brains using the Dice coefficient for the regions of brainstem, hippocampus, and cortex. The method is generic and can therefore be applied to hyperspectral images from different mass spectrometers and integrated with other established in vivo imaging modalities such as computed tomography (CT) and positron emission tomography (PET).


Assuntos
Automação , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa