RESUMO
BACKGROUND AND AIMS: Successful islet transplantation as a promising treatment of diabetes type 1 is threatened with the loss of islets during the pre-transplant culture due to hypoxia and oxidative stress-induced apoptosis. Therefore, optimization of culture in order to preserve the islets is a critical point. In this study, we investigated the effect of resveratrol, as a cytoprotective agent, on the cultured human islets. METHODS AND RESULTS: Isolated islets were treated with different concentrations of resveratrol for 24 and 72 h. Islets' viability, apoptosis, apoptosis markers, and insulin and C-peptide secretion, along with the production of reactive oxygen species (ROS), hypoxia inducible factor 1 alpha (HIF-1α), and its target genes in the islets were investigated. Our findings showed that the islets were exposed to hypoxia and oxidative stress after isolation and during culture. This insult induced apoptosis and decreased viability during 72 h. The presence of resveratrol significantly attenuated HIF-1α and ROS production, reduced apoptosis, promoted the VEGF secretion, and increased the insulin and C-peptide secretion. In this regard, resveratrol improved the islet's survival and function in the culture period. CONCLUSIONS: Using resveratrol can attenuate the stressful condition for the islets in the pre-transplant culture and subsequently ameliorate their viability and functionality that lead to successful outcome after clinical transplantation.
Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Resveratrol/farmacologia , Adulto , Idoso , Peptídeo C/metabolismo , Hipóxia Celular , Sobrevivência Celular/efeitos dos fármacos , Citoproteção , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Técnicas de Cultura de Tecidos , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Limitations in liver transplantation and advances in cell therapy methods motivated us to study primary hepatocytes. The main challenge in using primary hepatocytes for liver regeneration is that they lose their functionalities. We aimed to develop a controlled-shape hydrogel and apply the conditioned-media of mesenchymal stromal cells (CM-MSCs) to improve in vitro hepatocyte functions. In this experimental study, following rat hepatocyte isolation by collagenase perfusion and collection of human umbilical cord CM-MSCs, a simple and precise system called electrodeposition was used to produce the patterned alginate hydrogel. To reduce the cytopathic effects, we used an indirect electrodeposition method. For characterizing this structure, mechanical properties, Fourier-transform infrared spectroscopy (FTIR), water uptake, in-vitro degradation, and hydrogel stability were studied. Urea synthesis as a basic function of hepatocytes was assessed in five different groups. Scanning electron microscope (SEM) was utilized to evaluate the primary hepatocyte morphology and their dispersion in the fabricated structure. We observed a significant increase in urea synthesis in the presence of CM-MSCs in patterned hydrogel alginate compared to 2D culture on day 3 (p<0.05). However, there was no significant difference in simple and patterned hydrogel on day 2. We found that the electrodeposition method is appropriate for the rapid fabricating of hydrogel structures with arbitrary patterns for 3D cell culture.
Assuntos
Alginatos , Hidrogéis , Ratos , Humanos , Animais , Hidrogéis/metabolismo , Meios de Cultivo Condicionados , Alginatos/química , Ureia , Hepatócitos , Cordão Umbilical , Sódio/metabolismoRESUMO
Liver diseases in children and adolescents are a significant and arising public health issue and should be surveyed from different dimensions (clinical and para-clinical, psychological, socio-economic) and in diverse populations. Shiraz Liver Transplant Center, Shiraz, Iran is the only center for pediatric liver transplantation and its pre-operative evaluations. This provides a unique and valuable situation for studying this vulnerable population. The Shiraz Pediatric Liver Cirrhosis Cohort Study (SPLCCS) was established to assess cirrhotic children, the course of their disease, and treatment over time. This cohort study aimed to prospectively evaluate the natural course and factors that contributed to complications and death of children with chronic liver disease in the region. SPLCCS was launched in September 2018 after obtaining ethical approval; until August 2022, 370 children with end-stage liver disease were enrolled and followed every six months. Here, the cohort's features, the included population's baseline characteristics, and primary outcomes are reported.
Assuntos
Doença Hepática Terminal , Hepatopatias , Transplante de Fígado , Adolescente , Criança , Humanos , Estudos de Coortes , Cirrose Hepática/complicações , Hepatopatias/complicaçõesRESUMO
BACKGROUND: Tissue engineering is considered as a promising tool for remodeling the native cells microenvironment. In the present study, the effect of alginate hydrogel and collagen microspheres integrated with extracellular matrix components were evaluated in the decrement of apoptosis in human pancreatic islets. MATERIALS/METHODS: For three-dimensional culture, the islets were encapsulated in collagen microspheres, containing laminin and collagen IV and embedded in alginate scaffold for one week. After that the islets were examined in terms of viability, apoptosis, genes and proteins expression including BAX, BCL2, active caspase-3, and insulin. Moreover, the islets function was evaluated through glucose-induced insulin and C-peptide secretion assay. In order to evaluate the structure of the scaffolds and the morphology of the pancreatic islets in three-dimensional microenvironments, we performed scanning electron microscopy. RESULTS: Our findings showed that the designed hydrogel scaffolds significantly improved the islets viability using the reduction of activated caspase-3 and TUNEL positive cells. CONCLUSIONS: The reconstruction of the destructed matrix with alginate hydrogels and collagen microspheres might be an effective step to promote the culture of the islets.
Assuntos
Alginatos/química , Apoptose , Microambiente Celular , Hidrogéis/química , Ilhotas Pancreáticas/metabolismo , Microesferas , Engenharia Tecidual , HumanosRESUMO
Islet cell death and loss of function after isolation and before transplantation is considered a key barrier to successful islet transplantation outcomes. Mesenchymal stem cells (MSCs) have been used to protect isolated islets owing to their paracrine potential partially through the secretion of vascular endothelial growth factor (VEGF). The paracrine functions of MSCs are also mediated, at least in part, by the release of extracellular vesicles including exosomes. In the present study, we examined (i) the effect of exosomes from human MSCs on the survival and function of isolated mouse islets and (ii) whether exosomes contain VEGF and the potential impact of exosomal VEGF on the survival of mouse islets. Isolated mouse islets were cultured for three days with MSC-derived exosomes (MSC-Exo), MSCs, or MSC-conditioned media without exosomes (MSC-CM-without-Exo). We investigated the effects of the exosomes, MSCs, and conditioned media on islet viability, apoptosis and function. Besides the expression of apoptotic and pro-survival genes, the production of human and mouse VEGF proteins was evaluated. The MSCs and MSC-Exo, but not the MSC-CM-without-Exo, significantly decreased the percentage of apoptotic cells and increased islet viability following the downregulation of pro-apoptotic genes and the upregulation of pro-survival factors, as well as the promotion of insulin secretion. Human VEGF was observed in the isolated exosomes, and the gene expression and protein production of mouse VEGF significantly increased in islets cultured with MSC-Exo. MSC-derived exosomes are as efficient as parent MSCs for mitigating cell death and improving islet survival and function. This cytoprotective effect was probably mediated by VEGF transfer, suggesting a pivotal strategy for ameliorating islet transplantation outcomes.
RESUMO
Protection of isolated pancreatic islets against hypoxic and oxidative damage-induced apoptosis is essential during a pretransplantation culture period. A beneficial approach to maintain viable and functional islets is the coculture period with mesenchymal stem cells (MSCs). Hypoxia preconditioning of MSCs (Hpc-MSCs) for a short time stimulates the expression and secretion of antiapoptotic, antioxidant, and prosurvival factors. The aim of the present study was to evaluate the survival and function of human islets cocultured with Hpc-MSCs. Wharton's jelly-derived MSCs were subjected to hypoxia (5% O2: Hpc) or normoxia (20% O2: Nc) for 24 hours and then cocultured with isolated human islets in direct and indirect systems. Assays of viability and apoptosis, along with the production of reactive oxygen species (ROS), hypoxia-inducible factor 1-alpha (HIF-1α), apoptotic pathway markers, and vascular endothelial growth factor (VEGF) in the islets, were performed. Insulin and C-peptide secretions as islet function were also evaluated. Hpc-MSCs and Nc-MSCs significantly reduced the ROS production and HIF-1α protein aggregation, as well as downregulation of proapoptotic proteins and upregulation of antiapoptotic marker along with increment of VEGF secretion in the cocultured islet. However, the Hpc-MSCs groups were better than Nc-MSCs cocultured islets. Hpc-MSCs in both direct and indirect coculture systems improved the islet survival, while promotion of function was only significant in the direct cocultured cells. Hpc potentiated the cytoprotective and insulinotropic effects of MSCs on human islets through reducing stressful markers, inhibiting apoptosis pathway, enhancing prosurvival factors, and promoting insulin secretion, especially in direct coculture system, suggesting the effective strategy to ameliorate the islet quality for better transplantation outcomes.
RESUMO
BACKGROUND AND PURPOSE: Islet transplantation is considered as a promising approach in the treatment of diabetes type 1. In this regard, optimal culture of the pancreatic islets is promising in the success of transplantation. In the present study, the effect of olesoxime, as an antiapoptotic substance, was evaluated on human islet culture. EXPERIMENTAL APPROACH: The pancreatic islets were isolated by mechanical and enzymatic techniques. After overnight recovery, the islets were treated by different concentrations of olesoxime for 24 and 72 h. Then, they were examined in terms of viability, apoptosis, genes and proteins expression including BAX, BCL2, active caspase-3, and insulin. Moreover, the islets function was evaluated through the glucose-induced insulin and C-peptide secretion assay. KEY RESULTS: Our findings showed that the islets increased in apoptosis and the decreased in viability after 72 h; also, insulin and C-peptide secretion reduced. However, in the presence of olesoxime, BAX/BCL2 ratio and the activation of caspase-3 were decreased. Therefore, olesoxime could improve the viability of the islets with the decrease of apoptosis. CONCLUSION: The application of olesoxime can reduce the stressful condition for the islets in vitro and subsequently improve their viability and functionality.
Assuntos
Apoptose/efeitos dos fármacos , Colestenonas/farmacologia , Citoproteção/efeitos dos fármacos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Adulto , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Citoproteção/fisiologia , Feminino , Humanos , Ilhotas Pancreáticas/fisiologia , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/fisiologiaRESUMO
Minocycline functions as a therapeutic drug in different diseases because of its cytoprotective properties. In the present study, we examined the potential of minocycline to decrease the islet loss in pre-transplantation culture stage. Pancreatic islets were isolated from the deceased donors and treated by 0, 2, 10, and 20⯵M minocycline for 24 and 72â¯h. After that, the incubated islets were evaluated for viability and function. Apoptosis markers including Bax, Bcl2, and caspase-3 were determined at gene and protein level. On the other hand, TUNEL assay was used to confirm apoptosis. The functionality of the islets was investigated using glucose-induced insulin and c-peptide secretion assay. After 72â¯h of incubation, the viability of human islet was drastically decreased, whereas supplementation with minocycline inhibited the cells death. In this regard, the expression of Bax and active Caspase-3 was downregulated, whereas the expression of Bcl2 was upregulated. These consequences suggest that pancreatic islets undergo apoptosis in vitro and minocycline can decelerate or inhibit this process. Our findings identified minocycline as a cytoprotective molecule for preventing human islets death in pre-transplantation culture.
Assuntos
Apoptose/efeitos dos fármacos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Minociclina/farmacologia , Caspase 3/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Ilhotas Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismoRESUMO
Ginsenoside Rd (GS-Rd), one of the main pharmacologically active components of ginseng, has shown the potential to stabilize mitochondrial membrane integrity and decrease apoptotic death in neuronal and non-neuronal cells. The present study aimed to evaluate the effect of this bioactive molecule on the apoptosis-associated cell death in human pancreatic islets. In this regard human pancreatic islets were isolated and grouped for the treatment with GS-Rd. The isolated islets were treated with different concentrations of GS-Rd. After 24 and 72 h of incubation, the islets were evaluated in terms of viability, BAX, BCL2, and insulin gene expression, BAX, BCL2, and caspase-3 protein expression, apoptosis, and glucose-induced insulin/C-peptide secretion. Our results revealed the islet survival was significantly decreased in the control group after 72 h of incubation. However, GS-Rd inhibited the progress of the islet death in the treated groups. TUNEL staining revealed that the preventive effect of this molecule was caused by the inhibition of apoptosis-associated death. In this regard, the activation of caspase-3 was down-regulated in the presence of GS-Rd. GS-Rd did not exhibit undesirable effects on glucose-induced insulin and C-peptide stimulation secretion. In conclusion, GS-Rd inhibited the progress of death of cultured human pancreatic islets by diminishing the apoptosis of the islet cells.
RESUMO
To determine whether viral infections are related to renal cell carcinoma (RCC), we studied 49 patients with RCC (29 patients were males with age ranging from 30 to 81 years and a mean of 57.5 years; 20 patients were females with age ranging from 36 to 70 years with a mean of 58.4 years) and 16 non-neoplastic kidney patients as controls. Tissues specimens from study patients and controls were examined by nested polymerase chain reaction (PCR) to determine the presence of DNA of several viruses including human papilloma virus (HPV), Epstein-Barr virus (EBV), and polyoma viruses (BKV and JCV). Our results revealed that 7 of 49 (14.29%) RCC tissue specimens had HPV DNA compared with none of 16 non-cancer control subjects. Regarding the HPV types, all the positive results were high-risk HPV types (type 16 in three and 18 in four patients). The present study suggests that HPV infection, especially high-risk types, is associated with RCC. However, more studies are necessary to demonstrate the molecular oncogenic processes involved in this association.