Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 66(5): 506-518, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29710047

RESUMO

This article reviews the chemical constituents and bioactivities of several Indonesian plants typically used in Jamu prescriptions in Indonesia. Jamu is Indonesia traditional medicine: it consists of either a single ingredient or a mixture of several medicinal plants. One plant family always used in Jamu is Zingiberaceae (ginger), such as Curcuma domestica/C. longa, C. xanthorrhizae, C. heyneana, C. zedoaria, C. aeruginosa, Zingiber aromaticum, Alpinia galanga. We also report other commonly used plant families such as Justicia gendarussa and Cassia siamea, whose activities have been extensively explored by our department.


Assuntos
Extratos Vegetais/isolamento & purificação , Plantas Medicinais/química , Zingiberaceae/química , Indonésia , Estrutura Molecular , Extratos Vegetais/química
2.
J Nat Med ; 77(1): 152-172, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36443621

RESUMO

Essential oils (EOs) comprised of various bioactive compounds have been widely detected in the Curcuma species. Due to the widespread distribution and misidentification of Curcuma species and differences in processing methods, inconsistent reports on major compounds in rhizomes of the same species from different geographical regions are not uncommon. This inconsistency leads to confusion and inaccuracy in compound detection of each species and also hinders comparative study based on EO compositions. The present study aimed to characterize EO compositions of 12 Curcuma species, as well as to detect the compositional variation among different species, and between the plant specimens and their related genetically validated crude drug samples using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. The plant specimens of the same species showed similar EO patterns, regardless of introducing from different geographical sources. Based on the similarity of EO compositions, all the specimens and samples were separated into eight main groups: C. longa; C. phaeocaulis, C. aeruginosa and C. zedoaria; C. zanthorrhiza; C. aromatica and C. wenyujin; C. kwangsiensis; C. amada and C. mangga; C. petiolata; C. comosa. From EOs of all the specimens and samples, 54 major compounds were identified, and the eight groups were chemically characterized. Most of the major compounds detected in plant specimens were also observed in crude drug samples, although a few compounds converted or degraded due to processing procedures or over time. Orthogonal partial least squares-discriminant analysis allowed the marker compounds to discriminate each group or each species to be identified.


Assuntos
Curcuma , Óleos Voláteis , Curcuma/química , Curcuma/metabolismo , Óleos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ásia , Rizoma/química
3.
J Nat Med ; 76(1): 69-86, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34482450

RESUMO

Recently, Curcuma rhizome-related foods with claimed health benefits have been used worldwide; however, correct identification and quality assessment have not been conducted. Due to the wide distribution and morphological similarities of Curcuma species, the classification of some species is debated and nomenclature is inconsistent among countries. In this study, to elucidate specific molecular markers of medicinally used Curcuma species in Asia, and to solve the confusion on the reported botanical origin of crude drugs, molecular analysis based on the intron length polymorphism (ILP) in genes encoding diketide-CoA synthase and curcumin synthase and the trnK intron sequences was performed using 59 plant specimens and 42 crude drug samples from 13 Curcuma species, obtained from Asian countries. The ILP patterns of the respective species from both plant specimens and crude drug samples revealed high consistency in C. aromatica, C. zedoaria, C. phaeocaulis, C. aeruginosa, C. wenyujin, and C. zanthorrhiza, but showed intraspecies polymorphism in C. longa, C. kwangsiensis, C. amada, C. mangga and C. comosa. The C. longa specimens and samples were separated into three subgroups which were highly consistent with their geographical origins. Based on the ILP markers and the trnK intron sequences, the botanical origins of "Khamin oi" from Thailand were correctly determined to be C. longa or a hybrid between C. longa and other species, and "Wan narn kum" from Thailand and "Kasturi manjal" from India were correctly determined to be C. zanthorrhiza.


Assuntos
Curcuma , Curcumina , Coenzima A , Curcuma/genética , Íntrons/genética , Tailândia
4.
J Basic Clin Physiol Pharmacol ; 32(4): 881-887, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34214308

RESUMO

OBJECTIVES: Osteoporosis is the result of an imbalance in the rate of bone resorption and bone formation due to a decrease in estrogen. Phytoestrogens are plant compounds with structures and functions similar to estrogen. Phytoestrogens that bind to estrogen receptors in bone cells are able to modulate bone formation. Semanggi (Marsilea crenata Presl.) is a plant that contains phytoestrogens. The purpose of this study was to observe the expression of osteocalcin and predict the content of extract phytoestrogens through a computer simulation study to study the bone formation activity of the 96% ethanol extract of M. crenata leaves on hFOB 1.19 cells. METHODS: hFOB 1.19 cells were cultured in 24-well microplates, and 96% ethanol extract of M. crenata Presl. leaves was added at 62.5, 125 and 250 ppm. The expression of osteocalcin was analyzed using CLSM immunocytochemistry. Using PyRx 0.8 software and 1ERE protein for molecular docking, the compound was analyzed by computer. RESULTS: The 96% ethanol extract of M. crenata Presl. leaves can increase the expression of osteocalcin, the optimal dose is 125 ppm, and p<0.05 is 881.658 AU. In silico study was obtained six compounds that showed similar activity 17ß-estradiol as ER-ß agonists. CONCLUSIONS: The 96% ethanol extract of M. crenata Presl. leaves contain six compounds that are thought to be phytoestrogens and ER-ß agonists, and play a role in increasing bone formation activity and have the potential to be used as an oral drug.


Assuntos
Marsileaceae , Fitoestrógenos , Simulação por Computador , Estrogênios , Etanol , Simulação de Acoplamento Molecular , Osteocalcina , Osteogênese , Compostos Fitoquímicos , Fitoestrógenos/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta
5.
Turk J Pharm Sci ; 18(1): 80-90, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33634682

RESUMO

OBJECTIVES: To document traditional antimalarial plants used by Tetun ethnic people in West Timor Indonesia and evaluate the antiplasmodial activity and phytochemicals of several plants that are widely used as oral medicine. MATERIALS AND METHODS: A field study to document antimalarial plants followed by laboratory works to test antiplasmodial activity and identify the phytochemical constituents of some selected plants extract were applied. The inhibitory potency of ethanolic extracts of Strychnos ligustrina wood, roots of Calotropis gigantea, Fatuoa pilosa, and Neoalsomitra podagrica, whole plant of Cleome rutidosperma and Physalis angulata, stem barks of Alstonia spectabilis, Alstonia scholaris, Jatropha curcas and Plumeria alba, and leaves of Melia azedarach on the Plasmodium falciparum 3D7 strain in vitro were tested. Gas chromatography-mass spectrometry instrument was used to analyze the phytochemicals of the extracts. RESULTS: The Tetun ethnic people use 50 plant species as antimalarials. P. angulata, J. curcas, and A. spectabilis extracts show strong antiplasmodial activity with IC50 values of 0.22, 0.22, and 1.23 µg/mL, respectively; N. podagrica, A. scholaris, F. pilosa, and P. alba were moderate antiplasmodials with IC50 values of 11.60, 15.46, 24.92, and 36.39 µg/mL, respectively; and C. rutidosperma, M. azedarach, S. ligustrina, and C. gigantea were weak antiplasmodials with IC50 values of 54.25, 63.52, 63.91, and 66.49 µg/mL, respectively. The phytochemicals identification data indicate that these 11 plants contain alkaloids, terpenoids, steroids, coumarins, alcohols, thiols, phenolics, aldehydes, fatty acids, esters, and so forth. CONCLUSION: Plants widely used as antimalarials by the Tetun ethnic people is proven to have antiplasmodial activity.

6.
J Basic Clin Physiol Pharmacol ; 32(4): 803-808, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34214348

RESUMO

OBJECTIVES: Estrogen deficiency causes various health problems in postmenopausal women, including osteoporosis. Phytoestrogen emerged as a potential alternative of estrogen with minimum side effects. The aims of this study were to analyze the metabolite profiling results of various extract of Chyrsophyllum cainito L. leaves, which contain phytoestrogen, through in silico study against 3OLS protein, an X-ray protein of ERß, so it can predict the types of the phytoestrogen contents which have antiosteoporosis property. METHODS: In silico analysis was carried out for the compounds from the metabolite profiling data of C. cainito leaves from our previous study. The structure compounds from metabolite profiling results of various extract of C. cainito leaves were prepared with Avogadro 1.0.1 software, molecular docking was done using PyRx 0.8 software, and Biovia Discovery Studio Visualizer 2016 software was used to visualize the structure of compounds against 3OLS protein. The physicochemical characteristics of the compounds were analyzed using the SwissADME web tool. RESULTS: From in silico studies, it was known that there were total 11 compounds in C. cainito leaves that predicted as phytoestrogens which have ERß agonist properties against 3OLS protein. The ERß agonist was a compound that has parameters similar to 17ß-estradiol in its interaction with 3OLS protein, which has a pharmacophore distance of 10.862 Å, and binding to amino acids His 475 and Glu 305 or Arg 346 at receptor-ligand docking simulation. CONCLUSIONS: C. cainito leaves contain 11 compounds that are predicted to be phytoestrogens with ERß agonist properties, which is responsible for antiosteoporosis activity.


Assuntos
Fitoestrógenos , Sapotaceae , Receptor beta de Estrogênio , Humanos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Folhas de Planta
7.
Artigo em Inglês | MEDLINE | ID: mdl-31981453

RESUMO

Background Phytoestrogens have a high potential to overcome the neuroinflammation caused by estrogen deficiency. Marsilea crenata Presl. is a plant known to contain phytoestrogens. This research aimed to report the activity of a 96% ethanol extract of M. crenata leaves in inducing activation of microglia HMC3 cell to M2 polarity, which has anti-inflammatory characteristics. Methods The study was done by culturing microglia HMC3 cell in 24-well microplate and inducing it with IFN-γ for 24 h to activate the cell to M1 polarity, which has proinflammatory characteristics. The 96% ethanol extract was added with various doses of 62.5, 125, and 250 ppm. Genistein, 50 µM, was used as a positive control. The analysis of the immunofluorescence of Arginase-1 (Arg1) and ERß as markers was done using a convocal laser scanning microscope. Results The result of Arg1 shows a significant difference in Arg1 expression in the microglia HMC3 cell line between the negative control and all treatment groups at p < 0.05, with the best result at 250 ppm, whereas for ERß, the results show, at doses of 125 and 250 ppm, that the 96% ethanol extract of M. crenata leaves decrease the activated ERß expression at p < 0.05, with the best result at 250 ppm. The Arg1 and activated ERß expression have a weak negative relationship with the Pearson correlation test. Conclusions The 96% ethanol extract of M. crenata leaves has an antineuroinflammation activity through the induction of Arg1 and activated ERß expression in microglia HMC3 cell, with the best dose at 250 ppm.


Assuntos
Arginase/metabolismo , Receptor beta de Estrogênio/metabolismo , Etanol/química , Marsileaceae/química , Microglia/efeitos dos fármacos , Extratos Vegetais/farmacologia , Linhagem Celular , Humanos , Microglia/metabolismo , Fitoestrógenos/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-31967965

RESUMO

Background Neuroinflammation is one of the main causes of neurodegenerative events. Phytoestrogen is a group compounds that have an estrogen-like structure or function. Phytoestrogen has a high potential to overcome neuroinflammation caused by estrogen deficiency in postmenopausal women. Marsilea crenata Presl. is a plant known to contain phytoestrogens. This research aimed to analyze the activity of an n-butanol fraction of M. crenata leaves in inhibiting the classical pathway activation of microglia HMC3 cell line to M1 polarity, which has proinflammatory characteristics. Methods Microglia HMC3 cell line was cultured in Eagle's minimum essential medium and induced with IFN-γ for 24 h to activate the cell to M1 polarity in 24-well microplates. The n-butanol fraction was added with various doses of 62.5, 125, and 250 ppm and genistein 50 µM as a positive control. The expression of major histocompatibility complex II (MHC II) as a marker was tested using a confocal laser scanning microscope. Results The result of MHC II measurement shows a significant difference in the MHC II expression in the microglia HMC3 cell line between the negative control and all treatment groups at p<0.05, indicating a non-monotonic dose-response profile. Conclusions The best dosage to inhibit MHC II expression was 250 ppm with the value of 200.983 AU. It is then concluded that n-butanol fraction of M. crenata leaves has antineuroinflammation activity due to its phytoestrogens.


Assuntos
1-Butanol/química , Antígenos de Histocompatibilidade Classe II/biossíntese , Marsileaceae/química , Microglia/efeitos dos fármacos , Fitoestrógenos/farmacologia , Extratos Vegetais/farmacologia , Linhagem Celular , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Microglia/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia
9.
Integr Med Res ; 8(3): 139-144, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31304086

RESUMO

BACKGROUND: Interactions between humans and diseases for a long time have encourage people to construct concepts related to the disease and create strategies to prevent and treat the disease. OBJECTIVES: To document philosophy and practice of ethnomedicine of Tetun ethnic people in the prevention and treatment of malaria. METHODS: This research was a field study using ethnobotany and anthropology approaches. It was conducted among the Tetun people who settled in the Belu and Malaka districts from April to December 2017. A total of 94 informants consists of public healer, home healer and traditional medicine users were involved in semi-structured interviews and discussions. RESULTS: Tetun ethnic has local knowledge that malaria is caused by naturalistic factors that affect the hot-cold balance in the body. Prevention and treatment of malaria are intended to maintain and restore the hot-cold balance in the body. They use various local medicinal plants for the treatment of malaria, by drinking, bathing, massage, inhalation and cataplasm. Plants used have been proven scientifically to have pharmacological activity as true antimalarials and/or indirect antimalarials. CONCLUSION: Ethnomedicine practice of Tetun people on malaria is proven to contain scientific truth, although it is built on the basis of concepts that are different or even contrary to the true etiology of malaria.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa