Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(7): e1010677, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35789350

RESUMO

The opportunistic nosocomial pathogen Clostridioides difficile exhibits phenotypic heterogeneity through phase variation, a stochastic, reversible process that modulates expression. In C. difficile, multiple sequences in the genome undergo inversion through site-specific recombination. Two such loci lie upstream of pdcB and pdcC, which encode phosphodiesterases (PDEs) that degrade the signaling molecule c-di-GMP. Numerous phenotypes are influenced by c-di-GMP in C. difficile including cell and colony morphology, motility, colonization, and virulence. In this study, we aimed to assess whether PdcB phase varies, identify the mechanism of regulation, and determine the effects on intracellular c-di-GMP levels and regulated phenotypes. We found that expression of pdcB is heterogeneous and the orientation of the invertible sequence, or 'pdcB switch', determines expression. The pdcB switch contains a promoter that when properly oriented promotes pdcB expression. Expression is augmented by an additional promoter upstream of the pdcB switch. Mutation of nucleotides at the site of recombination resulted in phase-locked strains with significant differences in pdcB expression. Characterization of these mutants showed that the pdcB locked-ON mutant has reduced intracellular c-di-GMP compared to the locked-OFF mutant, consistent with increased and decreased PdcB activity, respectively. These alterations in c-di-GMP had concomitant effects on multiple known c-di-GMP regulated processes, indicating that phase variation of PdcB allows C. difficile to coordinately diversify multiple phenotypes in the population to enhance survival.


Assuntos
Proteínas de Bactérias , Clostridioides difficile , Diester Fosfórico Hidrolases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Clostridioides difficile/enzimologia , Clostridioides difficile/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Variação de Fase , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo
2.
J Autoimmun ; 147: 103266, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38851088

RESUMO

Regulation of autoreactive cells is key for both prevention and amelioration of autoimmune disease. A better understanding of the key cell population(s) responsible for downregulation of autoreactive cells would provide necessary foundational insight for cellular-based therapies in autoimmune disease. Utilizing a mouse model of anti-myeloperoxidase (MPO) glomerulonephritis, we sought to understand which immune cells contribute to downregulation of the anti-MPO autoimmune response. MPO-/- mice were immunized with whole MPO to induce an anti-MPO response. Anti-MPO splenocytes were then transferred into recipient mice (Rag2-/- mice or WT mice). Anti-MPO titers were followed over time. After anti-MPO splenocyte transfer, WT mice are able to downregulate the anti-MPO response while anti-MPO titers persist in Rag2-/- recipients. Reconstitution with WT splenocytes into Rag2-/- recipients prior to anti-MPO splenocyte transfer enabled mice to downregulate the anti-MPO immune response. Therefore, wildtype splenocytes contain a cellular population that is capable of downregulating the autoimmune response. Through splenocyte transfer, antibody depletion experiments, and purified cell population transfers, we confirmed that the regulatory T cell (Treg) population is responsible for the downregulation of the anti-MPO autoimmune response. Further investigation revealed that functional Tregs from WT mice are capable of downregulating anti-MPO antibody production and ameliorate anti-MPO induced glomerulonephritis. These data underscore the importance of functional Tregs for control of autoimmune responses and prevention of end-organ damage due to autoimmunity.


Assuntos
Autoimunidade , Modelos Animais de Doenças , Glomerulonefrite , Camundongos Knockout , Peroxidase , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Glomerulonefrite/imunologia , Glomerulonefrite/terapia , Camundongos , Peroxidase/metabolismo , Peroxidase/imunologia , Autoanticorpos/imunologia , Baço/imunologia , Regulação para Baixo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Transferência Adotiva , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Camundongos Endogâmicos C57BL
3.
Kidney Int ; 98(3): 744-757, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32446935

RESUMO

ANCA vasculitis is an autoimmune disease with increased expression of the autoantigen genes, myeloperoxidase (MPO) and proteinase 3 (PRTN3), but the origin and significance of expression is less distinct. To clarify this, we measured MPO and PRTN3 messenger RNA in monocytes, normal-density neutrophils, and in enriched leukocytes from peripheral blood mononuclear cells. Increased autoantigen gene expression was detected in normal-density neutrophils and enriched leukocytes from patients during active disease compared to healthy individuals, with the largest difference in enriched leukocytes. RNA-seq of enriched leukocytes comparing active-remission pairs identified a gene signature for low-density neutrophils. Cell sorting revealed low-density neutrophils contained mature and immature neutrophils depending on the presence or absence of CD10. Both populations contributed to autoantigen expression but the frequency of immature cells in low-density neutrophils did not correlate with low-density neutrophil MPO or PRTN3 expression. Low-density neutrophils were refractory to MPO-ANCA induced oxidative burst, suggesting an alternative role for low-density neutrophils in ANCA vasculitis pathogenesis. In contrast, normal-density neutrophils were activated by MPO-ANCA and monoclonal anti-PR3 antibody. Normal-density neutrophil activation correlated with MPO and PRTN3 mRNA. Increased autoantigen gene expression originating from the mature low-density and normal-density neutrophils suggests transcriptional dysregulation is a hallmark of ANCA vasculitis. Thus, the correlation between autoantigen gene expression and antibody-mediated normal-density neutrophil activation connects autoantigen gene expression with disease pathogenesis.


Assuntos
Anticorpos Anticitoplasma de Neutrófilos , Neutrófilos , Autoantígenos/genética , Expressão Gênica , Humanos , Leucócitos Mononucleares , Mieloblastina , Ativação de Neutrófilo , Peroxidase/genética
4.
Clin Transl Immunology ; 11(11): e1428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36381498

RESUMO

Objectives: T regulatory cells (Tregs) are a heterogeneous group of immunoregulatory cells that dampen self-harming immune responses and prevent the development of autoimmune diseases. In anti-neutrophil cytoplasmic autoantibody (ANCA) vasculitis, Tregs possess diminished suppressive capacity, which has been attributed to the expression of a FOXP3 splice-variant lacking exon 2 in T cells (FOXP3Δ2 CD4+ T cells). However, the suppressive capacity of Tregs varies between subsets. We evaluated the frequency of Treg subsets in ANCA vasculitis as a potential explanation for diminished suppressive capacity. Methods: We developed a custom mass cytometry panel and performed deep immune profiling of Tregs in healthy controls, patients with active disease and in remission. Using these data, we performed multidimensional reduction and discriminant analysis to identify associations between Treg subsets and disease activity. Results: Total Tregs were expanded in ANCA vasculitis, which was associated with remission and the administration of rituximab and/or prednisone. The frequency of FOXP3Δ2 CD4+ T cells did not distinguish disease activity and this population had high expression levels of CD127 and lacked both CD25 and Helios, suggesting that they are not conventional Tregs. The frequency of CXCR3+, CD103+ and CCR7+ Tregs distinguished disease activity, and the combination of the frequency of these three Treg subsets segregated active patients from patients in remission and healthy controls. From these three subsets, the frequency of CXCR3+ Tregs distinguished patients with active disease with renal involvement. Conclusion: Treg heterogeneity can discriminate disease activity and should be explored as a biomarker of disease activity in ANCA vasculitis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa