Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Genes Chromosomes Cancer ; 62(8): 441-448, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36695636

RESUMO

Cytogenetic analysis provides important information on the genetic mechanisms of cancer. The Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer (Mitelman DB) is the largest catalog of acquired chromosome aberrations, presently comprising >70 000 cases across multiple cancer types. Although this resource has enabled the identification of chromosome abnormalities leading to specific cancers and cancer mechanisms, a large-scale, systematic analysis of these aberrations and their downstream implications has been difficult due to the lack of a standard, automated mapping from aberrations to genomic coordinates. We previously introduced CytoConverter as a tool that automates such conversions. CytoConverter has now been updated with improved interpretation of karyotypes and has been integrated with the Mitelman DB, providing a comprehensive mapping of the 70 000+ cases to genomic coordinates, as well as visualization of the frequencies of chromosomal gains and losses. Importantly, all CytoConverter-generated genomic coordinates are publicly available in Google BigQuery, a cloud-based data warehouse, facilitating data exploration and integration with other datasets hosted by the Institute for Systems Biology Cancer Gateway in the Cloud (ISB-CGC) Resource. We demonstrate the use of BigQuery for integrative analysis of Mitelman DB with other cancer datasets, including a comparison of the frequency of imbalances identified in Mitelman DB cases with those found in The Cancer Genome Atlas (TCGA) copy number datasets. This solution provides opportunities to leverage the power of cloud computing for low-cost, scalable, and integrated analysis of chromosome aberrations and gene fusions in cancer.


Assuntos
Computação em Nuvem , Neoplasias , Humanos , Aberrações Cromossômicas , Cariotipagem , Neoplasias/genética , Fusão Gênica
2.
Entropy (Basel) ; 25(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36832685

RESUMO

Communication between cells enables the coordination that drives structural and functional complexity in biological systems. Both single and multicellular organisms have evolved diverse communication systems for a range of purposes, including synchronization of behavior, division of labor, and spatial organization. Synthetic systems are also increasingly being engineered to utilize cell-cell communication. While research has elucidated the form and function of cell-cell communication in many biological systems, our knowledge is still limited by the confounding effects of other biological phenomena at play and the bias of the evolutionary background. In this work, our goal is to push forward the context-free understanding of what impact cell-cell communication can have on cellular and population behavior to more fully understand the extent to which cell-cell communication systems can be utilized, modified, and engineered. We use an in silico model of 3D multiscale cellular populations, with dynamic intracellular networks interacting via diffusible signals. We focus on two key communication parameters: the effective interaction distance at which cells are able to interact and the receptor activation threshold. We found that cell-cell communication can be divided into six different forms along the parameter axes, three asocial and three social. We also show that cellular behavior, tissue composition, and tissue diversity are all highly sensitive to both the general form and specific parameters of communication even when the cellular network has not been biased towards that behavior.

3.
J Theor Biol ; 548: 111197, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35752283

RESUMO

Pancreatic Ductal Adenocarcinoma (PDAC) is widely known for its poor prognosis because it is often diagnosed when the cancer is in a later stage. We built a Boolean model to analyze the microenvironment of pancreatic cancer in order to better understand the interplay between pancreatic cancer, stellate cells, and their signaling cytokines. Specifically, we have used our model to study the impact of inducing four common mutations: KRAS, TP53, SMAD4, and CDKN2A. After implementing the various mutation combinations, we used our stochastic simulator to derive aggressiveness scores based on simulated attractor probabilities and long-term trajectory approximations. These aggression scores were then corroborated with clinical data. Moreover, we found sets of control targets that are effective among common mutations. These control sets contain nodes within both the pancreatic cancer cell and the pancreatic stellate cell, including PIP3, RAF, PIK3 and BAX in pancreatic cancer cell as well as ERK and PIK3 in the pancreatic stellate cell. Many of these nodes were found to be differentially expressed among pancreatic cancer patients in the TCGA database. Furthermore, literature suggests that many of these nodes can be targeted by drugs currently in circulation. The results herein help provide a proof of concept in the path towards personalized medicine through a means of mathematical systems biology. All data and code used for running simulations, statistical analysis, and plotting is available on a GitHub repository athttps://github.com/drplaugher/PCC_Mutations.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Humanos , Mutação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/genética , Neoplasias Pancreáticas
4.
Entropy (Basel) ; 20(12)2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33266678

RESUMO

Reservoir computers (RCs) are biology-inspired computational frameworks for signal processing that are typically implemented using recurrent neural networks. Recent work has shown that Boolean networks (BN) can also be used as reservoirs. We analyze the performance of BN RCs, measuring their flexibility and identifying the factors that determine the effective approximation of Boolean functions applied in a sliding-window fashion over a binary signal, both non-recursively and recursively. We train and test BN RCs of different sizes, signal connectivity, and in-degree to approximate three-bit, five-bit, and three-bit recursive binary functions, respectively. We analyze how BN RC parameters and function average sensitivity, which is a measure of function smoothness, affect approximation accuracy as well as the spread of accuracies for a single reservoir. We found that approximation accuracy and reservoir flexibility are highly dependent on RC parameters. Overall, our results indicate that not all reservoirs are equally flexible, and RC instantiation and training can be more efficient if this is taken into account. The optimum range of RC parameters opens up an angle of exploration for understanding how biological systems might be tuned to balance system restraints with processing capacity.

5.
BMC Bioinformatics ; 15: 221, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24965213

RESUMO

BACKGROUND: A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. RESULTS: This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. CONCLUSIONS: The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem.


Assuntos
Algoritmos , Biologia Computacional/métodos , Modelos Biológicos , Software
6.
Nucleic Acids Res ; 40(Web Server issue): W537-41, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22570416

RESUMO

The accuracy of atomistic biomolecular modeling and simulation studies depend on the accuracy of the input structures. Preparing these structures for an atomistic modeling task, such as molecular dynamics (MD) simulation, can involve the use of a variety of different tools for: correcting errors, adding missing atoms, filling valences with hydrogens, predicting pK values for titratable amino acids, assigning predefined partial charges and radii to all atoms, and generating force field parameter/topology files for MD. Identifying, installing and effectively using the appropriate tools for each of these tasks can be difficult for novice and time-consuming for experienced users. H++ (http://biophysics.cs.vt.edu/) is a free open-source web server that automates the above key steps in the preparation of biomolecular structures for molecular modeling and simulations. H++ also performs extensive error and consistency checking, providing error/warning messages together with the suggested corrections. In addition to numerous minor improvements, the latest version of H++ includes several new capabilities and options: fix erroneous (flipped) side chain conformations for HIS, GLN and ASN, include a ligand in the input structure, process nucleic acid structures and generate a solvent box with specified number of common ions for explicit solvent MD.


Assuntos
Modelos Moleculares , Simulação de Dinâmica Molecular , Software , Bases de Dados de Proteínas , Concentração de Íons de Hidrogênio , Internet , Conformação de Ácido Nucleico , Conformação Proteica , Prótons
7.
J Theor Comput Chem ; 13(3)2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-26236064

RESUMO

We investigate the influence of three common definitions of the solute/solvent dielectric boundary (DB) on the accuracy of the electrostatic solvation energy ΔGel computed within the Poisson Boltzmann and the generalized Born models of implicit solvation. The test structures include small molecules, peptides and small proteins; explicit solvent ΔGel are used as accuracy reference. For common atomic radii sets BONDI, PARSE (and ZAP9 for small molecules) the use of van der Waals (vdW) DB results, on average, in considerably larger errors in ΔGel than the molecular surface (MS) DB. The optimal probe radius ρw for which the MS DB yields the most accurate ΔGel varies considerably between structure types. The solvent accessible surface (SAS) DB becomes optimal at ρw ~ 0.2 Å (exact value is sensitive to the structure and atomic radii), at which point the average accuracy of ΔGel is comparable to that of the MS-based boundary. The geometric equivalence of SAS to vdW surface based on the same atomic radii uniformly increased by ρw gives the corresponding optimal vdW DB. For small molecules, the optimal vdW DB based on BONDI + 0.2 Å radii can yield ΔGel estimates at least as accurate as those based on the optimal MS DB. Also, in small molecules, pairwise charge-charge interactions computed with the optimal vdW DB are virtually equal to those computed with the MS DB, suggesting that in this case the two boundaries are practically equivalent by the electrostatic energy criteria. In structures other than small molecules, the optimal vdW and MS dielectric boundaries are not equivalent: the respective pairwise electrostatic interactions in the presence of solvent can differ by up to 5 kcal/mol for individual atomic pairs in small proteins, even when the total ΔGel are equal. For small proteins, the average decrease in pairwise electrostatic interactions resulting from the switch from optimal MS to optimal vdW DB definition can be mimicked within the MS DB definition by doubling of the solute dielectric constant. However, the use of the higher interior dielectric does not eliminate the large individual deviations between pairwise interactions computed within the two DB definitions. It is argued that while the MS based definition of the dielectric boundary is more physically correct in some types of practical calculations, the choice is not so clear in some other common scenarios.

8.
Front Digit Health ; 6: 1336050, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343907

RESUMO

Introduction: A digital twin is a virtual representation of a patient's disease, facilitating real-time monitoring, analysis, and simulation. This enables the prediction of disease progression, optimization of care delivery, and improvement of outcomes. Methods: Here, we introduce a digital twin framework for type 2 diabetes (T2D) that integrates machine learning with multiomic data, knowledge graphs, and mechanistic models. By analyzing a substantial multiomic and clinical dataset, we constructed predictive machine learning models to forecast disease progression. Furthermore, knowledge graphs were employed to elucidate and contextualize multiomic-disease relationships. Results and discussion: Our findings not only reaffirm known targetable disease components but also spotlight novel ones, unveiled through this integrated approach. The versatile components presented in this study can be incorporated into a digital twin system, enhancing our grasp of diseases and propelling the advancement of precision medicine.

9.
Clin Cancer Res ; 30(12): 2659-2671, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38619278

RESUMO

PURPOSE: The inherent genetic heterogeneity of acute myeloid leukemia (AML) has challenged the development of precise and effective therapies. The objective of this study was to elucidate the genomic basis of drug resistance or sensitivity, identify signatures for drug response prediction, and provide resources to the research community. EXPERIMENTAL DESIGN: We performed targeted sequencing, high-throughput drug screening, and single-cell genomic profiling on leukemia cell samples derived from patients with AML. Statistical approaches and machine learning models were applied to identify signatures for drug response prediction. We also integrated large public datasets to understand the co-occurring mutation patterns and further investigated the mutation profiles in the single cells. The features revealed in the co-occurring or mutual exclusivity pattern were further subjected to machine learning models. RESULTS: We detected genetic signatures associated with sensitivity or resistance to specific agents, and identified five co-occurring mutation groups. The application of single-cell genomic sequencing unveiled the co-occurrence of variants at the individual cell level, highlighting the presence of distinct subclones within patients with AML. Using the mutation pattern for drug response prediction demonstrates high accuracy in predicting sensitivity to some drug classes, such as MEK inhibitors for RAS-mutated leukemia. CONCLUSIONS: Our study highlights the importance of considering the gene mutation patterns for the prediction of drug response in AML. It provides a framework for categorizing patients with AML by mutations that enable drug sensitivity prediction.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Mutação , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Análise de Célula Única/métodos , Aprendizado de Máquina , Sequenciamento de Nucleotídeos em Larga Escala , Masculino
10.
Cancer Genet ; 270-271: 1-11, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410105

RESUMO

OBJECTIVE: Breast cancers (BrCA) are a leading cause of illness and mortality worldwide. Black women have a higher incidence rate relative to white women prior to age 40 years, and a lower incidence rate after 50 years. The objective of this study is to identify -omics differences between the two breast cancer cohorts to better understand the disparities observed in patient outcomes. MATERIALS AND METHODS: Using Standard SQL, we queried ISB-CGC hosted Google BigQuery tables storing TCGA BrCA gene expression, methylation, and somatic mutation data and analyzed the combined multi-omics results using a variety of methods. RESULTS: Among Stage II patients 50 years or younger, genes PIK3CA and CDH1 are more frequently mutated in White (W50) than in Black or African American patients (BAA50), while HUWE1, HYDIN, and FBXW7 mutations are more frequent in BAA50. Over-representation analysis (ORA) and Gene Set Enrichment Analysis (GSEA) results indicate that, among others, the Reactome Signaling by ROBO Receptors gene set is enriched in BAA50. Using the Virtual Inference of Protein-activity by Enriched Regulon analysis (VIPER) algorithm, putative top 20 master regulators identified include NUPR1, NFKBIL1, ZBTB17, TEAD1, EP300, TRAF6, CACTIN, and MID2. CACTIN and MID2 are of prognostic value. We identified driver genes, such as OTUB1, with suppressed expression whose DNA methylation status were inversely correlated with gene expression. Networks capturing microRNA and gene expression correlations identified notable microRNA hubs, such as miR-93 and miR-92a-2, expressed at higher levels in BAA50 than in W50. DISCUSSION/CONCLUSION: The results point to several driver genes as being involved in the observed differences between the cohorts. The findings here form the basis for further mechanistic exploration.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Adulto , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Multiômica , Brancos , Oncogenes , MicroRNAs/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética
11.
PLoS One ; 18(4): e0282122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37023084

RESUMO

The capacity of cells to process information is currently used to design cell-based tools for ecological, industrial, and biomedical applications such as detecting dangerous chemicals or for bioremediation. In most applications, individual cells are used as the information processing unit. However, single cell engineering is limited by the necessary molecular complexity and the accompanying metabolic burden of synthetic circuits. To overcome these limitations, synthetic biologists have begun engineering multicellular systems that combine cells with designed subfunctions. To further advance information processing in synthetic multicellular systems, we introduce the application of reservoir computing. Reservoir computers (RCs) approximate a temporal signal processing task via a fixed-rule dynamic network (the reservoir) with a regression-based readout. Importantly, RCs eliminate the need of network rewiring, as different tasks can be approximated with the same reservoir. Previous work has already demonstrated the capacity of single cells, as well as populations of neurons, to act as reservoirs. In this work, we extend reservoir computing in multicellular populations with the widespread mechanism of diffusion-based cell-to-cell signaling. As a proof-of-concept, we simulated a reservoir made of a 3D community of cells communicating via diffusible molecules and used it to approximate a range of binary signal processing tasks, focusing on two benchmark functions-computing median and parity functions from binary input signals. We demonstrate that a diffusion-based multicellular reservoir is a feasible synthetic framework for performing complex temporal computing tasks that provides a computational advantage over single cell reservoirs. We also identified a number of biological properties that can affect the computational performance of these processing systems.


Assuntos
Computadores , Processamento de Sinais Assistido por Computador , Engenharia , Comunicação Celular , Engenharia Celular
12.
iScience ; 25(9): 104951, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36093045

RESUMO

We developed a computational approach to find the best intervention to achieve transcription factor (TF) mediated transdifferentiation. We construct probabilistic Boolean networks (PBNs) from single-cell RNA sequencing data of two different cell states to model hematopoietic transcription factors cross-talk. This was achieved by a "sampled network" approach, which enabled us to construct large networks. The interventions to induce transdifferentiation consisted of permanently activating or deactivating each of the TFs and determining the probability mass transfer of steady-state probabilities from the departure to the destination cell type or state. Our findings support the common assumption that TFs that are differentially expressed between the two cell types are the best intervention points to achieve transdifferentiation. TFs whose interventions are found to transdifferentiate progenitor B cells into monocytes include EBF1 down-regulation, CEBPB up-regulation, TCF3 down-regulation, and STAT3 up-regulation.

13.
F1000Res ; 11: 493, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761837

RESUMO

Synthetic lethal interactions (SLIs), genetic interactions in which the simultaneous inactivation of two genes leads to a lethal phenotype, are promising targets for therapeutic intervention in cancer, as exemplified by the recent success of PARP inhibitors in treating BRCA1/2-deficient tumors. We present SL-Cloud, a new component of the Institute for Systems Biology Cancer Gateway in the Cloud (ISB-CGC), that provides an integrated framework of cloud-hosted data resources and curated workflows to enable facile prediction of SLIs. This resource addresses two main challenges related to SLI inference: the need to wrangle and preprocess large multi-omic datasets and the availability of multiple comparable prediction approaches. SL-Cloud enables customizable computational inference of SLIs and testing of prediction approaches across multiple datasets. We anticipate that cancer researchers will find utility in this tool for discovery of SLIs to support further investigation into potential drug targets for anticancer therapies.


Assuntos
Computação em Nuvem , Neoplasias , Humanos , Neoplasias/genética , Biologia de Sistemas , Multiômica
14.
Front Digit Health ; 4: 1007784, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274654

RESUMO

We are rapidly approaching a future in which cancer patient digital twins will reach their potential to predict cancer prevention, diagnosis, and treatment in individual patients. This will be realized based on advances in high performance computing, computational modeling, and an expanding repertoire of observational data across multiple scales and modalities. In 2020, the US National Cancer Institute, and the US Department of Energy, through a trans-disciplinary research community at the intersection of advanced computing and cancer research, initiated team science collaborative projects to explore the development and implementation of predictive Cancer Patient Digital Twins. Several diverse pilot projects were launched to provide key insights into important features of this emerging landscape and to determine the requirements for the development and adoption of cancer patient digital twins. Projects included exploring approaches to using a large cohort of digital twins to perform deep phenotyping and plan treatments at the individual level, prototyping self-learning digital twin platforms, using adaptive digital twin approaches to monitor treatment response and resistance, developing methods to integrate and fuse data and observations across multiple scales, and personalizing treatment based on cancer type. Collectively these efforts have yielded increased insights into the opportunities and challenges facing cancer patient digital twin approaches and helped define a path forward. Given the rapidly growing interest in patient digital twins, this manuscript provides a valuable early progress report of several CPDT pilot projects commenced in common, their overall aims, early progress, lessons learned and future directions that will increasingly involve the broader research community.

15.
Front Genet ; 12: 667382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512714

RESUMO

The maintenance and function of tissues in health and disease depends on cell-cell communication. This work shows how high-level features, representing cell-cell communication, can be defined and used to associate certain signaling "axes" with clinical outcomes. We generated a scaffold of cell-cell interactions and defined a probabilistic method for creating per-patient weighted graphs based on gene expression and cell deconvolution results. With this method, we generated over 9,000 graphs for The Cancer Genome Atlas (TCGA) patient samples, each representing likely channels of intercellular communication in the tumor microenvironment (TME). It was shown that cell-cell edges were strongly associated with disease severity and progression, in terms of survival time and tumor stage. Within individual tumor types, there are predominant cell types, and the collection of associated edges were found to be predictive of clinical phenotypes. Additionally, genes associated with differentially weighted edges were enriched in Gene Ontology terms associated with tissue structure and immune response. Code, data, and notebooks are provided to enable the application of this method to any expression dataset (https://github.com/IlyaLab/Pan-Cancer-Cell-Cell-Comm-Net).

16.
Biophys J ; 98(5): 872-80, 2010 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-20197041

RESUMO

This work investigates statistical prevalence and overall physical origins of changes in charge states of receptor proteins upon ligand binding. These changes are explored as a function of the ligand type (small molecule, protein, and nucleic acid), and distance from the binding region. Standard continuum solvent methodology is used to compute, on an equal footing, pK changes upon ligand binding for a total of 5899 ionizable residues in 20 protein-protein, 20 protein-small molecule, and 20 protein-nucleic acid high-resolution complexes. The size of the data set combined with an extensive error and sensitivity analysis allows us to make statistically justified and conservative conclusions: in 60% of all protein-small molecule, 90% of all protein-protein, and 85% of all protein-nucleic acid complexes there exists at least one ionizable residue that changes its charge state upon ligand binding at physiological conditions (pH = 6.5). Considering the most biologically relevant pH range of 4-8, the number of ionizable residues that experience substantial pK changes (DeltapK > 1.0) due to ligand binding is appreciable: on average, 6% of all ionizable residues in protein-small molecule complexes, 9% in protein-protein, and 12% in protein-nucleic acid complexes experience a substantial pK change upon ligand binding. These changes are safely above the statistical false-positive noise level. Most of the changes occur in the immediate binding interface region, where approximately one out of five ionizable residues experiences substantial pK change regardless of the ligand type. However, the physical origins of the change differ between the types: in protein-nucleic acid complexes, the pK values of interface residues are predominantly affected by electrostatic effects, whereas in protein-protein and protein-small molecule complexes, structural changes due to the induced-fit effect play an equally important role. In protein-protein and protein-nucleic acid complexes, there is a statistically significant number of substantial pK perturbations, mostly due to the induced-fit structural changes, in regions far from the binding interface.


Assuntos
Fenômenos Biofísicos , Modelos Estatísticos , Proteínas/química , Proteínas/metabolismo , Aminoácidos/química , Bases de Dados de Proteínas , Concentração de Íons de Hidrogênio , Ligantes , Ligação Proteica , Conformação Proteica , Eletricidade Estática
17.
Lett Biomath ; 7(1): 67-80, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34141873

RESUMO

One of the ultimate goals in systems biology is to develop control strategies to find efficient medical treatments. One step towards this goal is to develop methods for changing the state of a cell into a desirable state. We propose an efficient method that determines combinations of network perturbations to direct the system towards a predefined state. The method requires a set of control actions such as the silencing of a gene or the disruption of the interaction between two genes. An optimal control policy defined as the best intervention at each state of the system can be obtained using existing methods. However, these algorithms are computationally prohibitive for models with tens of nodes. Our method generates control actions that approximates the optimal control policy with high probability with a computational efficiency that does not depend on the size of the state space. Our C++ code is available at https://github.com/boaguilar/SDDScontrol.

18.
Gigascience ; 9(7)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32696951

RESUMO

BACKGROUND: Mechanistic models, when combined with pertinent data, can improve our knowledge regarding important molecular and cellular mechanisms found in cancer. These models make the prediction of tissue-level response to drug treatment possible, which can lead to new therapies and improved patient outcomes. Here we present a data-driven multiscale modeling framework to study molecular interactions between cancer, stromal, and immune cells found in the tumor microenvironment. We also develop methods to use molecular data available in The Cancer Genome Atlas to generate sample-specific models of cancer. RESULTS: By combining published models of different cells relevant to pancreatic ductal adenocarcinoma (PDAC), we built an agent-based model of the multicellular pancreatic tumor microenvironment, formally describing cell type-specific molecular interactions and cytokine-mediated cell-cell communications. We used an ensemble-based modeling approach to systematically explore how variations in the tumor microenvironment affect the viability of cancer cells. The results suggest that the autocrine loop involving EGF signaling is a key interaction modulator between pancreatic cancer and stellate cells. EGF is also found to be associated with previously described subtypes of PDAC. Moreover, the model allows a systematic exploration of the effect of possible therapeutic perturbations; our simulations suggest that reducing bFGF secretion by stellate cells will have, on average, a positive impact on cancer apoptosis. CONCLUSIONS: The developed framework allows model-driven hypotheses to be generated regarding therapeutically relevant PDAC states with potential molecular and cellular drivers indicating specific intervention strategies.


Assuntos
Algoritmos , Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/patologia , Suscetibilidade a Doenças , Modelos Biológicos , Comunicação Autócrina , Carcinoma Ductal Pancreático/metabolismo , Comunicação Celular/genética , Citocinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Especificidade de Órgãos , Comunicação Parácrina , Fenótipo
19.
Cell Rep ; 31(4): 107577, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32348771

RESUMO

Mycobacterium tuberculosis (MTB) displays the remarkable ability to transition in and out of dormancy, a hallmark of the pathogen's capacity to evade the immune system and exploit susceptible individuals. Uncovering the gene regulatory programs that underlie the phenotypic shifts in MTB during disease latency and reactivation has posed a challenge. We develop an experimental system to precisely control dissolved oxygen levels in MTB cultures in order to capture the transcriptional events that unfold as MTB transitions into and out of hypoxia-induced dormancy. Using a comprehensive genome-wide transcription factor binding map and insights from network topology analysis, we identify regulatory circuits that deterministically drive sequential transitions across six transcriptionally and functionally distinct states encompassing more than three-fifths of the MTB genome. The architecture of the genetic programs explains the transcriptional dynamics underlying synchronous entry of cells into a dormant state that is primed to infect the host upon encountering favorable conditions.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Mycobacterium tuberculosis/genética , Progressão da Doença , Humanos
20.
Phys Rev E ; 97(5-1): 052415, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29906914

RESUMO

The origin of multicellularity in metazoa is one of the fundamental questions of evolutionary biology. We have modeled the generic behaviors of gene regulatory networks in isogenic cells as stochastic nonlinear dynamical systems-coupled Boolean networks with perturbation. Model simulations under a variety of dynamical regimes suggest that the central characteristic of multicellularity, permanent spatial differentiation (diversification), indeed can arise. Additionally, we observe that diversification is more likely to occur near the critical regime of Lyapunov stability.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Evolução Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa