Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arch Insect Biochem Physiol ; 109(3): e21864, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34982841

RESUMO

New approaches are needed to reduce risks to the environment and natural enemies and to avoid or delay the onset of insecticide resistance. The use of insecticides based on proteinase inhibitors of hemolymph is an alternative for the control of Lepidoptera pests primarily by having low toxicity and short persistence in the environment. Thus, in this study, we describe the purification process and identification of protease inhibitors from hemolymph Anticarsia gemmatalis and their activities against trypsin enzymes. Furthermore, the three-dimensional (3D) structure of the inhibitor and binding mode to trypsin enzymes was determined, and the stability of the inhibitory activity in several pHs and temperature values was evaluated. The inhibitor was characterized as a serpin family inhibitor and named A. gemmatalis hemolymph serpin inhibitor (AHSI), with an approximate mass of 38 ± 2 kDa, highly stable to temperature and pH variations, and with inhibitory capacity on bovine trypsin and gut trypsin of A. gemmatalis demonstrated by calculated Ki values and affinity energy through molecular docking, being a reversible competitive inhibitor that binds to the active site of trypsin-like enzymes. We conclude that the AHSI inhibitor identified from the hemolymph of the soybean pest A. gemmatalis preserves the original structure of the serpin family with a good overall stereochemical quality confirmed from molecular modeling. The docking analysis showed that the reactive site of the inhibitor is in contact with the catalytic cavity of the trypsin with high-affinity energy.


Assuntos
Lepidópteros , Mariposas , Animais , Bovinos , Hemolinfa , Larva , Simulação de Acoplamento Molecular , Inibidores de Proteases , Glycine max , Tripsina
2.
Arch Insect Biochem Physiol ; 110(2): e21887, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35315942

RESUMO

Insects overcome the action of natural protease inhibitors (PIs) due to evolutionary adaptations through endogenous proteolysis and reprogramming proteases. Insect adaptations complicate the formulation of IP-based crop protection products. However, small peptides designed based on the active site of enzymes have shown promising results that could change this scenario. GORE1 and GORE2 are designed tripeptides that reduce the survival of Anticarsia gemmatalis when ingested orally. In this article, the stability and ability of the peptides to bind trypsin-like enzymes of A. gemmatalis were evaluated by molecular dynamics (MD) simulations. The ability of the peptides to inhibit trypsin-like enzymes in vivo was compared with the SKTI protein by feeding A. gemmatalis larvae at different concentrations, followed by an inhibition persistence assay. During the MD simulation of enzyme-ligand complexes, both peptides showed a small variation of root-mean-square deviation and root-mean-square fluctuation, suggesting that these molecules reach equilibrium when forming a complex with the trypsin-like enzyme. Furthermore, both peptides form hydrogen bonds with substrate recognition sites of A. gemmatalis trypsin-like enzyme, with GORE2 having more interactions than GORE1. Larvae of A. gemmatalis exposed to the peptides and SKTI showed a similar reduction in proteolytic activity, but the persistence of inhibition of trypsin-like enzyme was longer in peptide-fed insects. Despite their size, the peptides exhibit important active and substrate binding site interactions, stability during complex formation, and steadiness effects in vivo. The results provide fundamental information for the development of mimetic molecules and help in decision-making for the selection of delivery methods for larger-scale experiments regarding similar molecules.


Assuntos
Fabaceae , Mariposas , Animais , Larva , Peptídeos , Glycine max/metabolismo , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa