Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Genome Res ; 32(1): 189-202, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965939

RESUMO

Anopheles coluzzii is one of the primary vectors of human malaria in sub-Saharan Africa. Recently, it has spread into the main cities of Central Africa threatening vector control programs. The adaptation of An. coluzzii to urban environments partly results from an increased tolerance to organic pollution and insecticides. Some of the molecular mechanisms for ecological adaptation are known, but the role of transposable elements (TEs) in the adaptive processes of this species has not been studied yet. As a first step toward assessing the role of TEs in rapid urban adaptation, we sequenced using long reads six An. coluzzii genomes from natural breeding sites in two major Central Africa cities. We de novo annotated TEs in these genomes and in an additional high-quality An. coluzzii genome, and we identified 64 new TE families. TEs were nonrandomly distributed throughout the genome with significant differences in the number of insertions of several superfamilies across the studied genomes. We identified seven putatively active families with insertions near genes with functions related to vectorial capacity, and several TEs that may provide promoter and transcription factor binding sites to insecticide resistance and immune-related genes. Overall, the analysis of multiple high-quality genomes allowed us to generate the most comprehensive TE annotation in this species to date and identify several TE insertions that could potentially impact both genome architecture and the regulation of functionally relevant genes. These results provide a basis for future studies of the impact of TEs on the biology of An. coluzzii.


Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Elementos de DNA Transponíveis/genética , Humanos , Malária/genética , Mosquitos Vetores/genética , População Urbana
2.
Mikrochim Acta ; 191(9): 526, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120744

RESUMO

A LOx-based electrochemical biosensor for high-level lactate determination was developed. For the construction of the biosensor, chitosan and Nafion layers were integrated by using a spin coating procedure, leading to less porous surfaces in comparison with those recorded after a drop casting procedure. The analytical performance of the resulting biosensor for lactate determination was evaluated in batch and flow regime, displaying satisfactory results in both modes ranging from 0.5 to 20 mM concentration range for assessing the lactic acidosis. Finally, the lactate levels in raw serum samples were estimated using the biosensor developed and verified with a blood gas analyzer. Based on these results, the biosensor developed is promising for its use in healthcare environment, after its proper miniaturization. A pH probe based on common polyaniline-based electrochemical sensor was also developed to assist the biosensor for the lactic acidosis monitoring, leading to excellent results in stock solutions ranging from 6.0 to 8.0 mM and raw plasma samples. The results were confirmed by using two different approaches, blood gas analyzer and pH-meter. Consequently, the lactic acidosis monitoring could be achieved in continuous flow regime using both (bio)sensors.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Ácido Láctico , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Concentração de Íons de Hidrogênio , Ácido Láctico/sangue , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Humanos , Acidose Láctica/sangue , Acidose Láctica/diagnóstico , Quitosana/química , Polímeros de Fluorcarboneto/química , Compostos de Anilina/química , Enzimas Imobilizadas/química , Oxigenases de Função Mista
3.
Org Biomol Chem ; 21(3): 590-599, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36545812

RESUMO

A copper-iron-based catalyst has been prepared by a low-temperature co-precipitation and sonication method. The use of high-energy ultrasound reduces the time required for the preparation process from one workweek to one day with respect to the catalysts obtained by conventional coprecipitation and thermal treatment methods. The resulting material has been characterized at compositional, textural, structural, and chemical levels by ICP-AES, BET, SEM-EDS, XRD, TEM, and FTIR among other techniques. The material shows catalytic activity in the acyloxylation reaction of 1,4-dioxane and cyclohexene under microwave irradiation. In parallel with the optimized catalyst synthesis, the use of microwaves allowed for a substantial improvement in the outcome of the reaction in terms of cleanliness, yield, and time.


Assuntos
Cobre , Ferro , Cobre/química , Micro-Ondas , Cicloexenos
4.
Mikrochim Acta ; 190(5): 168, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37012526

RESUMO

A new electrochemical sensor device has been developed through the modification of a polyaniline-silicon oxide network with carbon black (CB). Enhanced electrical conductivity and antifouling properties have been achieved due to the integration of this cheap nanomaterial into the bulk of the sensor. The structure of the developed material was characterized using Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy techniques. Cyclic voltammetry was used to characterize electrochemically the Sonogel-Carbon/Carbon Black-PANI (SNG-C/CB-PANI) sensor device. In addition, differential pulse voltammetry was employed to evaluate the analytical response of the sensor towards sundry chlorophenols, common environmental hazards in aqueous ecosystems. The modified sensor material showed excellent antifouling properties, which led to a better electroanalytical performance than the one displayed with the bare sensor. Notably, a sensitivity of 5.48 × 103 µA mM-1 cm-2 and a limit of detection of 0.83 µM were obtained in the determination of 4-chloro-3-methylphenol (PCMC) at a working potential of 0.78 V (vs. 3 M Ag/AgCl/KCl), along with proficient values of reproducibility and repeatability (relative standard deviation < 3%). Finally, the analysis of PCMC was carried out in multiple validated water samples using the synthesized SNG-C/CB-PANI sensor device, obtaining excellent results of recovery values (97-104%). The synergetic effect of polyaniline and carbon black leads to novel antifouling and electrocatalytic effects that improve the applicability of this sensor in sample analysis versus complex conventional devices.

5.
Sensors (Basel) ; 22(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36366146

RESUMO

Reusable Sonogel-Carbon electrodes containing carbon black (SNGC-CB) have been used for the electrochemical analysis of caffeic acid (CA) in real matrices. Measurements were firstly performed in standard solutions, in which SNGC-CB electrodes allowed the electrochemical determination of CA with high sensitivity and low limit of detection, equal to 0.76 µM. The presence of CB nanostructures in the formulation led to improved performances with respect to pristine SNGC electrodes. Then, measurements were performed in four instant coffees of different brands. A comparison between the results obtained by electrochemical, chromatographic and spectroscopic methods showed that SBGC-CB electrodes represent a simple and economic tool for the rapid assessment of caffeic acid-related molecules in instant coffees.


Assuntos
Carbono , Café , Carbono/química , Eletrodos , Ácidos Cafeicos/análise , Ácidos Cafeicos/química , Técnicas Eletroquímicas/métodos , Limite de Detecção
6.
J Chem Phys ; 154(18): 184501, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241040

RESUMO

Deep eutectic solvents (DESs) and dilutions thereof (mainly in H2O but also in many other non-aqueous solvents and co-solvent mixtures) have recently attracted great attention. It is well known that DES dilutions exhibit deviations from ideality. Interestingly, the treatment of DES as a mixture of two components or a pseudo-component is by no means trivial when determining deviations in density and, mainly, in viscosity. Herein, we studied aqueous dilutions of one of the most widely studied DES, this is, that composed of choline chloride and urea in a 1:2 molar ratio (e.g., ChCl2U). Using density and viscosity data reported in previous works, we calculated the excess molar volumes (VE) and excess viscosities (ln ηE) considering ChCl2U as either a mixture of two components or a pseudo-component, that is, taking the DES molecular weight as MChCl2U = fChClMChCl + fUMU = 86.58 g mol-1 (with fChCl = 1/3 and fU = 2/3) or as M* ChCl2U = MChCl + 2 MU = 259.74 g mol-1. We found that neither the sign of VE and VE* nor their evolution with temperature was influenced by the use of either MChCl2U or M* ChCl2U, and only the absolute magnitude of the deviation and the DES content (in wt. %) at which the minimum appears exhibited some differences. However, ln ηE and ln ηE* exhibited opposite signs, negative and positive, respectively. The odd achievement of negative ln ηE in aqueous dilutions of ChCl2U characterized by the formation of HB networks suggest the treatment of ChCl2U as a pseudo-component as more appropriate. Moreover, the role played by the presence of U in the evolution of ln ηE* with temperature was also discussed.

7.
Nucleic Acids Res ; 47(13): 6842-6857, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31175824

RESUMO

Although transposable elements are an important source of regulatory variation, their genome-wide contribution to the transcriptional regulation of stress-response genes has not been studied yet. Stress is a major aspect of natural selection in the wild, leading to changes in the transcriptional regulation of a variety of genes that are often triggered by one or a few transcription factors. In this work, we take advantage of the wealth of information available for Drosophila melanogaster and humans to analyze the role of transposable elements in six stress regulatory networks: immune, hypoxia, oxidative, xenobiotic, heat shock, and heavy metal. We found that transposable elements were enriched for caudal, dorsal, HSF, and tango binding sites in D. melanogaster and for NFE2L2 binding sites in humans. Taking into account the D. melanogaster population frequencies of transposable elements with predicted binding motifs and/or binding sites, we showed that those containing three or more binding motifs/sites are more likely to be functional. For a representative subset of these TEs, we performed in vivo transgenic reporter assays in different stress conditions. Overall, our results showed that TEs are relevant contributors to the transcriptional regulation of stress-response genes.


Assuntos
Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica/genética , Genes de Insetos , Estresse Fisiológico/genética , Transcrição Gênica/genética , Motivos de Aminoácidos , Animais , Animais Geneticamente Modificados , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Sítios de Ligação , Imunoprecipitação da Cromatina , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/embriologia , Drosophila melanogaster/imunologia , Feminino , Redes Reguladoras de Genes , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Ligação Proteica , Especificidade da Espécie , Fatores de Transcrição/metabolismo
8.
Sensors (Basel) ; 21(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207281

RESUMO

Silica-based electrodes which permanently include a graphite/Au nanoparticles composite were tested for non-enzymatic detection of glucose and fructose. The composite material showed an effective electrocatalytic activity, to achieve the oxidation of the two analytes at quite low potential values and with good linearity. Reduced surface passivation was observed even in presence of organic species normally constituting real samples. Electrochemical responses were systematically recorded in cyclic voltammetry and differential pulse voltammetry by analysing 99 solutions containing glucose and fructose at different concentration values. The analysed samples consisted both in glucose and fructose aqueous solutions at pH 12 and in solutions of synthetic musts of red grapes, to test the feasibility of the approach in a real frame. Multivariate exploratory analyses of the electrochemical signals were performed using the Principal Component Analysis (PCA). This gave evidence of the effectiveness of the chemometric approach to study the electrochemical sensor responses. Thanks to PCA, it was possible to highlight the different contributions of glucose and fructose to the voltammetric signal, allowing their selective determination.


Assuntos
Grafite , Nanopartículas Metálicas , Técnicas Eletroquímicas , Eletrodos , Frutose , Glucose , Ouro , Limite de Detecção , Análise Multivariada , Dióxido de Silício
9.
Sensors (Basel) ; 21(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34372213

RESUMO

Conducting polymers (CPs) are extensively studied due to their high versatility and electrical properties, as well as their high environmental stability. Based on the above, their applications as electronic devices are promoted and constitute an interesting matter of research. This review summarizes their application in common electronic devices and their implementation in electronic tongues and noses systems (E-tongues and E-noses, respectively). The monitoring of diverse factors with these devices by multivariate calibration methods for different applications is also included. Lastly, a critical discussion about the enclosed analytical potential of several conducting polymer-based devices in electronic systems reported in literature will be offered.


Assuntos
Técnicas Biossensoriais , Polímeros , Nariz Eletrônico , Eletrônica , Língua
10.
Sensors (Basel) ; 22(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35009659

RESUMO

In this work, the development of an electrochemical sensor for melatonin determination is presented. The sensor was based on Sonogel-Carbon electrode material (SNGCE) and Au nanoparticles (AuNPs). The low-cost and environmentally friendly SNGCE material was prepared by the ultrasound-assisted sonogel method. AuNPs were prepared by a chemical route and narrow size distribution was obtained. The electrochemical characterization of the SNGCE/AuNP sensor was carried out by cyclic voltammetry in the presence of a redox probe. The analytical performance of the SNGCE/AuNP sensor in terms of linear response range, repeatability, selectivity, and limit of detection was investigated. The optimized SNGCE/AuNP sensor displayed a low detection limit of 8.4 nM melatonin in synthetic samples assessed by means of the amperometry technique. The potential use of the proposed sensor in real sample analysis and the anti-matrix capability were assessed by a recovery study of melatonin detection in human peripheral blood serum with good accuracy.


Assuntos
Melatonina , Nanopartículas Metálicas , Carbono , Técnicas Eletroquímicas , Eletrodos , Ouro , Humanos , Limite de Detecção
11.
Sensors (Basel) ; 21(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34960563

RESUMO

In this work, template-free nanostructured conducting polymers (nCPs)-embedded gold nanoparticles (AuNPs) from aniline, thiophene and 3,4-ethylenedioxythiophene have been prepared via a one-pot sonochemical method. The synthesis of the nanocomposite (nCPs-AuNPs) was achieved in a short period of time (5-10 min), by applying high-energy ultrasound to an aqueous mixture of a CP precursor monomer and KAuCl4, in the presence of LiClO4 as dopant. The synthesis process is simpler, greener and faster in comparison to other procedures reported in the literature. Remarkably, bulk quantities of doped polyaniline PANI-AuNPs nanofibers were obtained. Subsequently, they were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR), as well as by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). PANI-AuNPs nanofibers were also employed as immobilization matrix for a benchmark enzyme, glucose oxidase (GOX). Finally, glucose was determined in real samples of white and red wines by using the so-obtained GOX-PANI-AuNPs/Sonogel-Carbon biosensor, providing outstanding recoveries (99.54%). This work may offer important insights into the synthesis of nanostructured conducting polymers and also stimulates the exploration of the applications of these nanocomposites, especially in research fields such as (bio)sensors, catalysis and composite materials.


Assuntos
Nanopartículas Metálicas , Nanofibras , Compostos de Anilina , Ouro
12.
Sensors (Basel) ; 19(1)2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30585182

RESUMO

The application of a novel Poly(3,4-ethylenedioxythiophene)-Tyrosinase/Sonogel-Carbon electrode (PEDOT-Tyr/SNGC) biosensor to beers and wines analysis is proposed. This biosensor implies a new Sinusoidal Current (SC) electrodeposition method to immobilize the enzyme generating a nanostructure surface. The biosensors were characterized electrochemically, employing cyclic voltammetry and electrochemical impedance spectroscopy. Sensitivity, limit of detection, and correlation coefficients of the linear fitting were 2.40 × 10-4 µA·µM-1, 4.33 µM, and R² = 0.9987, respectively. Caffeic acid is used as the reference polyphenol. A sampling of nine beers (four lager, three stout, and two non-alcoholic beers), and four wines (three red and one white wine) purchased in a local store was performed. The Polyphenol indeces for beers and wines have been assessed using the proposed biosensor, and the obtained values are in agreement with the literature data. Antioxidant properties of the samples using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical spectrophotometric method were also evaluated. The correlation between the polyphenol index and the antioxidant capacity was obtained for beers and wines.

13.
J Assist Reprod Genet ; 34(3): 417-422, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28028772

RESUMO

PURPOSE: Hydroxypropyl cellulose (HPC), a polysaccharide that forms a viscous gel under low temperatures, is a promising substitute of the blood-derived macromolecules traditionally used in cryopreservation solutions. The performance of a protein-free, fully synthetic set of vitrification and warming solutions was assessed in a matched pair analysis with donor oocytes. METHODS: A prospective study including 219 donor MII oocytes was carried out, comparing the laboratory outcomes of oocytes vitrified with HPC-based solutions and their fresh counterparts. The primary performance endpoint was the fertilization rate. Secondary parameters assessed were embryo quality on days 2 and 3. RESULTS: 70/73 (95.9%) vitrified MII oocytes exhibited morphologic survival 2 h post-warming, with 49 (70.0%) presented normal fertilization, compared to 105 of 146 (71.9%) MII fresh oocytes. Similar embryo quality was observed in both groups. A total of 18 embryos implanted, out of 38 embryos transferred (47.3%), resulting in 13 newborns.


Assuntos
Transferência Embrionária/métodos , Fertilização in vitro/métodos , Oócitos/efeitos dos fármacos , Vitrificação/efeitos dos fármacos , Celulose/administração & dosagem , Celulose/análogos & derivados , Criopreservação/métodos , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Humanos , Oócitos/crescimento & desenvolvimento , Gravidez , Taxa de Gravidez , Doadores de Tecidos
14.
Cryobiology ; 73(1): 40-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27312427

RESUMO

Although it was qualitatively pointed out by Fahy et al. (1984), the key role of the warming rates in non-equillibrium vitrification has only recently been quantitatively established for murine oocytes by Mazur and Seki (2011). In this work we study the performance of a closed vitrification device designed under the new paradigm, for the vitrification of human oocytes. The vitrification carrier consists of a main straw in which a specifically designed capillary is mounted and where the oocytes are loaded by aspiration. It can be hermetically sealed before immersion in liquid nitrogen for vitrification, and it is warmed in a sterile water bath at 37 °C. Measured warming rates achieved with this design were of 600.000 ºC/min for a standard DMEM solution and 200.000 ºC/min with the vitrification solution for human oocytes. A cohort of 143 donor MII sibling human oocytes was split into two groups: control (fresh) and vitrified with SafeSpeed device. Similar results were found in both groups: survival (97.1%), fertilization after ICSI (74.7% in control vs. 77.3% in vitrified) and good quality embryos at day three (54.3% in control vs. 58.1% in vitrified) were settled as performance indicators. The pregnancy rate was 3/6 (50%) for the control, 2/3 (66%) for vitrified and 4/5 (80%) for mixed transfers.


Assuntos
Criopreservação/instrumentação , Fertilização in vitro/métodos , Vitrificação , Criopreservação/métodos , Feminino , Humanos , Oócitos , Gravidez , Taxa de Gravidez
15.
BMC Microbiol ; 15: 250, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26518156

RESUMO

BACKGROUND: Escherichia coli Nissle 1917 (EcN) is a probiotic used in the treatment of intestinal diseases. Although it is considered safe, EcN is closely related to the uropathogenic E. coli strain CFT073 and contains many of its predicted virulence elements. Thus, it is relevant to assess whether virulence-associated genes are functional in EcN. One of these genes encodes the secreted autotransporter toxin (Sat), a member of the serine protease autotransporters of Enterobacteriaceae (SPATEs) that are secreted following the type V autotransporter pathway. Sat is highly prevalent in certain E. coli pathogenic groups responsible for urinary and intestinal infections. In these pathogens Sat promotes cytotoxic effects in several lines of undifferentiated epithelial cells, but not in differentiated Caco-2 cells. RESULTS: Here we provide evidence that sat is expressed by EcN during the colonization of mouse intestine. The EcN protein is secreted as an active serine protease, with its 107 kDa-passenger domain released into the medium as a soluble protein. Expression of recombinant EcN Sat protein in strain HB101 increases paracellular permeability to mannitol in polarized Caco-2 monolayers. This effect, also reported for the Sat protein of diffusely adherent E. coli, is not observed when this protein is expressed in the EcN background. In addition, we show that EcN supernatants confer protection against Sat-mediated effects on paracellular permeability, thus indicating that other secreted EcN factors are able to prevent barrier disruption caused by pathogen-related factors. Sat is not required for intestinal colonization, but the EcNsat::cat mutant outcompetes wild-type EcN in the streptomycin-treated mouse model. Analysis of the presence of sat in 29 strains of the ECOR collection isolated from stools of healthy humans shows 34.8 % positives, with high prevalence of strains of the phylogenetic groups D and B2, related with extra-intestinal infections. CONCLUSIONS: Sat does not act as a virulence factor in EcN. The role of Sat in intestinal pathogenesis relies on other genetic determinants responsible for the bacterial pathotype.


Assuntos
Toxinas Bacterianas/metabolismo , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Enteropatias/microbiologia , Animais , Células CACO-2 , Sobrevivência Celular , Escherichia coli/classificação , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Células HeLa , Humanos , Enteropatias/metabolismo , Enteropatias/veterinária , Camundongos , Filogenia
16.
Proteomics ; 14(2-3): 222-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307187

RESUMO

Escherichia coli Nissle 1917 (EcN) is a probiotic used for the treatment of intestinal disorders. EcN improves gastrointestinal homeostasis and microbiota balance; however, little is known about how this probiotic delivers effector molecules to the host. Outer membrane vesicles (OMVs) are constitutively produced by Gram-negative bacteria and have a relevant role in bacteria-host interactions. Using 1D SDS-PAGE and highly sensitive LC-MS/MS analysis we identified in this study 192 EcN vesicular proteins with high confidence in three independent biological replicates. Of these proteins, 18 were encoded by strain-linked genes and 57 were common to pathogen-derived OMVs. These proteins may contribute to the ability of this probiotic to colonize the human gut as they fulfil functions related to adhesion, immune modulation or bacterial survival in host niches. This study describes the first global OMV proteome of a probiotic strain and provides evidence that probiotic-derived OMVs contain proteins that can target these vesicles to the host and mediate their beneficial effects on intestinal function. All MS data have been deposited in the ProteomeXchange with identifier PXD000367 (http://proteomecentral.proteomexchange.org/dataset/PXD000367).


Assuntos
Proteínas da Membrana Bacteriana Externa/análise , Proteínas de Escherichia coli/análise , Escherichia coli/química , Probióticos/química , Eletroforese em Gel de Poliacrilamida , Escherichia coli/citologia , Proteômica , Espectrometria de Massas em Tandem
17.
Chemosphere ; 350: 141039, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147923

RESUMO

Sulfonamides are among the widespread bacterial antibiotics. Despite this, their quick emergence constitutes a serious problem for ecosystems and human health. Therefore, there is an increased interest in developing relevant detection method for antibiotics in different matrices. In this work, a straightforward, green, and cost-effective protocol was proposed for the preparation of a selective molecularly imprinted membrane (MIM) of sulfamethoxazole (SMX), a commonly used antibiotic. Thus, cellulose acetate was used as the functional polymer, while polyethylene glycol served as a pore-former. The developed MIM was successfully characterized through scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The MIM was used as a sensing platform in conjunction with a smartphone for optical readout, enabling on-site, selective, and highly sensitive detection of SMX. In this way, a satisfactory imprinting factor of around 3.6 and a limit of detection of 2 ng mL-1 were reached after applying response surface methodologies, including Box-Behnken and central composite designs. Besides, MIM demonstrated its applicability for the accurate and selective detection of SMX in river waters, wastewater, and drugs. Additionally, the MIM was shown to be a valuable sorbent in a solid-phase extraction protocol, employing a spin column setup that offered rapid and reproducible results. Furthermore, the developed sensing platform exhibited notable regeneration properties over multiple cycles and long shelf-life in different storage conditions. The newly developed methodology is of crucial importance to overcome the limitations of classical imprinting polymers. Furthermore, the smartphone-based platform was used to surpass the typically expensive and complicated methods of detection.


Assuntos
Antibacterianos , Impressão Molecular , Humanos , Impressão Molecular/métodos , Sulfametoxazol , Espectroscopia de Infravermelho com Transformada de Fourier , Ecossistema , Extração em Fase Sólida/métodos , Polímeros/química , Adsorção
18.
Talanta ; 270: 125603, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38194860

RESUMO

The present work introduces two novel approaches to fabricate simple and cost-effective pH and temperature probes. Sinusoidal voltage methodologies were employed to electrodeposit polyaniline (PANI) at different growth times (10-20 min) on the surface of an affordable Sonogel-Carbon electrode to conform a robust pH sensor. The presence of PANI and its phases were corroborated by electrochemical means. The sensibility, reversibility and selectivity of the produced sensor were very adequate to apply it in physiological samples. In this regard, the proposed sensor was evaluated in artificial blood serum as well as untreated plasma samples obtaining outstanding results in comparison with a gold reference technique (error <2 %). In addition, a new composite sonogel material, intrinsically modified with multiwalled carbon nanotubes, was attached on top of an electrode couple to one-step fabricate a new temperature probe, relating resistance of the probe with the surroundings temperature. In this case, an optical microscopy characterization was performed to study the sturdiness of the layer. Remarkably, suitable results in terms of sensitivity and selectivity were obtained. The probes were assessed in artificial and untreated plasma samples as well, with the corresponding validation step (error <1 %) by using a commercial temperature probe.

19.
Anal Bioanal Chem ; 405(11): 3525-39, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23446912

RESUMO

Graphite powder-based electrodes have the electrochemical performance of quasi-noble metal electrodes with intrinsic advantages related to the possibility of modification to enhance selectivity and their easily renewable surface, with no need for hazardous acids or bases for their cleaning. In contrast with commercial electrodes, for example screen-printed or sputtered-chip electrodes, graphite powder-based electrodes can also be fabricated in any laboratory with the form and characteristics desired. They are also readily modified with advanced materials, with relatively high reproducibility. All these characteristics make them a very interesting option for obtaining a large variety of electrodes to resolve different kinds of analytical problems. This review summarizes the state-of-the-art, advantages, and disadvantages of graphite powder-based electrodes in electrochemical analysis in the 21st century. It includes recent trends in carbon paste electrodes, devoting special attention to the use of emergent materials as new binders and to the development of other composite electrodes. The most recent advances in the use of graphite powder-modified sol-gel electrodes are also described. The development of sonogel-carbon electrodes and their use in electrochemical sensors and biosensors is included. These materials extend the possibilities of applications, especially for industrial technology-transfer purposes, and their development could affect not only electroanalytical green chemistry but other interesting areas also, for example catalysis and energy conversion and storage.

20.
Sensors (Basel) ; 13(4): 4979-5007, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23584124

RESUMO

The present work reports a study of the electrocatalytic activity of CeO2 nanoparticles and gold sononanoparticles (AuSNPs)/CeO2 nanocomposite, deposited on the surface of a Sonogel-Carbon (SNGC) matrix used as supporting electrode and the application of the sensing devices built with them to the determination of ascorbic acid (AA) used as a benchmark analyte. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the electrocatalytic behavior of CeO2- and AuSNPs/CeO2-modified SNGC electrodes, utilizing different concentrations of CeO2 nanoparticles and different AuSNPs:CeO2 w/w ratios. The best detection and quantification limits, obtained for CeO2 (10.0 mg·mL(-1))- and AuSNPs/CeO2 (3.25% w/w)-modified SNGC electrodes, were 1.59 × 10(-6) and 5.32 × 10(-6) M, and 2.93 × 10(-6) and 9.77 × 10(-6) M, respectively, with reproducibility values of 5.78% and 6.24%, respectively, for a linear concentration range from 1.5 µM to 4.0 mM of AA. The electrochemical devices were tested for the determination of AA in commercial apple juice for babies. The results were compared with those obtained by applying high performance liquid chromatography (HPLC) as a reference method. Recovery errors below 5% were obtained in most cases, with standard deviations lower than 3% for all the modified SNGC electrodes. Bare, CeO2- and AuSNPs/CeO2-modified SNGC electrodes were structurally characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). AuSNPs and AuSNPs/CeO2 nanocomposite were characterized by UV-vis spectroscopy and X-ray diffraction (XRD), and information about their size distribution and shape was obtained by transmission electron microscopy (TEM). The advantages of employing CeO2 nanoparticles and AuSNPs/CeO2 nanocomposite in SNGC supporting material are also described. This research suggests that the modified electrode can be a very promising voltammetric sensor for the determination of electroactive species of interest in real samples.


Assuntos
Bebidas/análise , Carbono/química , Cério/química , Eletroquímica/métodos , Ouro/química , Nanopartículas Metálicas/química , Ultrassom , Ácido Ascórbico/análise , Calibragem , Catálise , Eletrodos , Géis/química , Humanos , Lactente , Malus/química , Nanopartículas Metálicas/ultraestrutura , Reprodutibilidade dos Testes , Espectrometria por Raios X , Espectrofotometria Ultravioleta , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa