Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 585(7825): 414-419, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641828

RESUMO

Zika virus (ZIKV) belongs to the family Flaviviridae, and is related to other viruses that cause human diseases. Unlike other flaviviruses, ZIKV infection can cause congenital neurological disorders and replicates efficiently in reproductive tissues1-3. Here we show that the envelope protein (E) of ZIKV is polyubiquitinated by the E3 ubiquitin ligase TRIM7 through Lys63 (K63)-linked polyubiquitination. Accordingly, ZIKV replicates less efficiently in the brain and reproductive tissues of Trim7-/- mice. Ubiquitinated E is present on infectious virions of ZIKV when they are released from specific cell types, and enhances virus attachment and entry into cells. Specifically, K63-linked polyubiquitin chains directly interact with the TIM1 (also known as HAVCR1) receptor of host cells, which enhances virus entry in cells as well as in brain tissue in vivo. Recombinant ZIKV mutants that lack ubiquitination are attenuated in human cells and in wild-type mice, but not in live mosquitoes. Monoclonal antibodies against K63-linked polyubiquitin specifically neutralize ZIKV and reduce viraemia in mice. Our results demonstrate that the ubiquitination of ZIKV E is an important determinant of virus entry, tropism and pathogenesis.


Assuntos
Ubiquitinação , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Zika virus/metabolismo , Zika virus/patogenicidade , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Encéfalo/metabolismo , Linhagem Celular , Culicidae/citologia , Culicidae/virologia , Endossomos/metabolismo , Feminino , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Humanos , Masculino , Fusão de Membrana , Camundongos , Especificidade de Órgãos , Poliubiquitina/imunologia , Poliubiquitina/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Tropismo Viral , Viremia/imunologia , Viremia/prevenção & controle , Viremia/virologia , Replicação Viral , Zika virus/química , Zika virus/genética , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia
2.
PLoS Pathog ; 18(5): e1010532, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533195

RESUMO

Ebola virus (EBOV) VP35 is a polyfunctional protein involved in viral genome packaging, viral polymerase function, and host immune antagonism. The mechanisms regulating VP35's engagement in different functions are not well-understood. We previously showed that the host E3 ubiquitin ligase TRIM6 ubiquitinates VP35 at lysine 309 (K309) to facilitate virus replication. However, how K309 ubiquitination regulates the function of VP35 as the viral polymerase co-factor and the precise stage(s) of the EBOV replication cycle that require VP35 ubiquitination are not known. Here, we generated recombinant EBOVs encoding glycine (G) or arginine (R) mutations at VP35/K309 (rEBOV-VP35/K309G/-R) and show that both mutations prohibit VP35/K309 ubiquitination. The K309R mutant retains dsRNA binding and efficient type-I Interferon (IFN-I) antagonism due to the basic residue conservation. The rEBOV-VP35/K309G mutant loses the ability to efficiently antagonize the IFN-I response, while the rEBOV-VP35/K309R mutant's suppression is enhanced. The replication of both mutants was significantly attenuated in both IFN-competent and -deficient cells due to impaired interactions with the viral polymerase. The lack of ubiquitination on VP35/K309 or TRIM6 deficiency disrupts viral transcription with increasing severity along the transcriptional gradient. This disruption of the transcriptional gradient results in unbalanced viral protein production, including reduced synthesis of the viral transcription factor VP30. In addition, lack of ubiquitination on K309 results in enhanced interactions with the viral nucleoprotein and premature nucleocapsid packaging, leading to dysregulation of virus assembly. Overall, we identified a novel role of VP35 ubiquitination in coordinating viral transcription and assembly.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Ebolavirus/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Ubiquitinação , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Transcrição Viral
3.
Biol Reprod ; 99(5): 1100-1112, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29893818

RESUMO

Term and preterm parturition are associated with oxidative stress (OS)-induced p38 mitogen-activated protein kinase (p38MAPK)-mediated fetal tissue (amniochorion) senescence. p38MAPK activation is a complex cell- and stimulant-dependent process. Two independent pathways of OS-induced p38MAPK activation were investigated in amnion epithelial cells (AECs) in response to cigarette smoke extract (CSE: a validated OS inducer in fetal cells): (1) the OS-mediated oxidation of apoptosis signal-regulating kinase (ASK)-1 bound Thioredoxin (Trx[SH]2) dissociates this complex, creating free and activated ASK1-signalosome and (2) transforming growth factor-mediated activation of (TGF)-beta-activated kinase (TAK)1 and TGF-beta-activated kinase 1-binding protein (TAB)1. AECs isolated from normal term, not-in-labor fetal membranes increased p38MAPK in response to CSE and downregulated it in response to antioxidant N-acetylcysteine. In AECs, both Trx and ASK1 were localized; however, they remained dissociated and not complexed, regardless of conditions. Silencing either ASK1 or its downstream effectors (MKK3/6) did not affect OS-induced p38MAPK activation. Conversely, OS increased TGF-beta's release from AECs and increased phosphorylation of both p38MAPK and TAB1. Silencing of TAB1, but not TAK1, prevented p38MAPK activation, which is indicative of TAB1-mediated autophosphorylation of p38MAPK, an activation mechanism seldom seen. OS-induced p38MAPK activation in AECs is ASK1-Trx signalosome-independent and is mediated by the TGF-beta pathway. This knowledge will help to design strategies to reduce p38MAPK activation-associated pregnancy risks.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Âmnio/citologia , Células Epiteliais/metabolismo , Estresse Oxidativo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Adulto , Ativação Enzimática , Células Epiteliais/efeitos dos fármacos , Feminino , Humanos , MAP Quinase Quinase Quinase 5/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Fosforilação , Gravidez , RNA Interferente Pequeno/farmacologia , Fumaça , Nicotiana/química
4.
Clin Exp Allergy ; 48(12): 1676-1687, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30244512

RESUMO

BACKGROUND: Ragweed pollen extract (RWPE) induces TLR4-NFκB-CXCL-dependent recruitment of ROS-generating neutrophils to the airway and OGG1 DNA glycosylase-dependent excision of oxidatively induced 8-OH-Gua DNA base lesions from the airway epithelial cell genome. Administration of free 8-OH-Gua base stimulates RWPE-induced allergic lung inflammation. These studies suggest that stimulation of innate receptors and their adaptor by allergenic extracts initiates excision of a set of DNA base lesions that facilitate innate/allergic lung inflammation. OBJECTIVE: To test the hypothesis that stimulation of a conserved innate receptor/adaptor pathway by allergenic extracts induces excision of a set of pro-inflammatory oxidatively induced DNA base lesions from the lung genome that stimulate allergic airway inflammation. METHODS: Wild-type (WT), Tlr4KO, Tlr2KO, Myd88KO, and TrifKO mice were intranasally challenged once or repeatedly with cat dander extract (CDE), and innate or allergic inflammation and gene expression were quantified. We utilized GC-MS/MS to quantify a set of oxidatively induced DNA base lesions after challenge of naïve mice with CDE. RESULTS: A single CDE challenge stimulated innate neutrophil recruitment that was partially dependent on TLR4 and TLR2, and completely on Myd88, but not TRIF. A single CDE challenge stimulated MyD88-dependent excision of DNA base lesions 5-OH-Cyt, FapyAde, and FapyGua from the lung genome. A single challenge of naïve WT mice with 5-OH-Cyt stimulated neutrophilic lung inflammation. Multiple CDE instillations stimulated MyD88-dependent allergic airway inflammation. Multiple administrations of 5-OH-Cyt with CDE stimulated allergic sensitization and allergic airway inflammation. CONCLUSIONS AND CLINICAL RELEVANCE: We show for the first time that CDE challenge stimulates MyD88-dependent excision of DNA base lesions. Our data suggest that the resultant-free base(s) contribute to CDE-induced innate/allergic lung inflammation. We suggest that blocking the MyD88 pathway in the airways with specific inhibitors may be a novel targeted strategy of inhibiting amplification of innate and adaptive immune inflammation in allergic diseases by oxidatively induced DNA base lesions.


Assuntos
Citosina/análogos & derivados , Dano ao DNA/efeitos dos fármacos , Hipersensibilidade/etiologia , Hipersensibilidade/metabolismo , Pulmão/metabolismo , Estresse Oxidativo , Alérgenos/imunologia , Animais , Biomarcadores , Gatos , Cromatografia Gasosa , Citosina/farmacologia , Citosina/toxicidade , Modelos Animais de Doenças , Hipersensibilidade/patologia , Imunidade Inata , Imunoglobulina E/imunologia , Pulmão/imunologia , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Pneumonia/etiologia , Pneumonia/metabolismo , Pneumonia/patologia , Espécies Reativas de Oxigênio , Espectrometria de Massas em Tandem
5.
Am J Physiol Lung Cell Mol Physiol ; 313(6): L1058-L1068, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28798252

RESUMO

A mucosal oxidative burst is a hallmark response to pollen exposure that promotes allergic inflammatory responses. Reactive species constituents of oxidative stress signal via the modification of cellular molecules including nucleic acids. One of the most abundant forms of oxidative genomic base damage is 8-oxo-7,8-dihydroguanine (8-oxoG), which is removed from DNA by 8-oxoguanine DNA glycosylase 1 (OGG1). OGG1 in complex with 8-oxoG acts as a GDP-GTP exchange factor and induces acute inflammation; however, the mechanism(s) by which OGG1 signaling regulates allergic airway inflammation is not known. Here, we postulate that the OGG1 signaling pathway differentially altered the levels of small regulatory RNAs and increased the expression of T helper 2 (Th2) cytokines in ragweed pollen extract (RWPE)-challenged lungs. To determine this, the lungs of sensitized mice expressing or lacking OGG1 were challenged with RWPE and/or with OGG1's excision product 8-oxoG. The responses in lungs were assessed by next-generation sequencing, as well as various molecular and histological approaches. The results showed that RWPE challenge induced oxidative burst and damage to DNA and activated OGG1 signaling, resulting in the differential expression of 84 micro-RNAs (miRNAs), which then exacerbated antigen-driven allergic inflammation and histological changes in the lungs. The exogenous administration of the downregulated let-7b-p3 mimetic or inhibitors of upregulated miR-23a or miR-27a decreased eosinophil recruitment and mucus and collagen production via controlling the expression of IL-4, IL-5, and IL-13. Together, these data demonstrate the roles of OGG1 signaling in the regulation of antigen-driven allergic immune responses via differential expression of miRNAs upstream of Th2 cytokines and eosinophils.


Assuntos
Antígenos de Plantas/toxicidade , Dano ao DNA , Hipersensibilidade/imunologia , MicroRNAs/imunologia , Extratos Vegetais/toxicidade , Eosinofilia Pulmonar/imunologia , Células Th2/imunologia , Animais , Linhagem Celular Transformada , Citocinas/genética , Citocinas/imunologia , DNA Glicosilases/genética , DNA Glicosilases/imunologia , Hipersensibilidade/genética , Hipersensibilidade/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , MicroRNAs/genética , Eosinofilia Pulmonar/induzido quimicamente , Eosinofilia Pulmonar/genética , Eosinofilia Pulmonar/patologia , Células Th2/patologia
6.
J Allergy Clin Immunol ; 137(5): 1506-1513.e2, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26586036

RESUMO

BACKGROUND: The National Health and Nutrition Examination Survey identified several pollens and cat dander as among the most common allergens that induce allergic sensitization and allergic diseases. We recently reported that ragweed pollen extract (RWPE) requires Toll-like receptor 4 (TLR4) to stimulate CXCL-mediated innate neutrophilic inflammation, which in turn facilitates allergic sensitization and airway inflammation. Myeloid differentiation protein 2 (MD2) is a TLR4 coreceptor, but its role in pollen- and cat dander-induced innate and allergic inflammation has not been critically evaluated. OBJECTIVE: We sought to elucidate the role of MD2 in inducing pollen- and cat dander-induced innate and allergic airway inflammation. METHODS: TCM(Null) (TLR4(Null), CD14(Null), MD2(Null)), TLR4(Hi), and TCM(Hi) cells and human bronchial epithelial cells with small interfering RNA-induced downregulation of MD2 were stimulated with RWPE, other pollen allergic extracts, or cat dander extract (CDE), and activation of nuclear factor κB (NF-κB), secretion of the NF-κB-dependent CXCL8, or both were quantified. Wild-type mice or mice with small interfering RNA knockdown of lung MD2 were challenged intranasally with RWPE or CDE, and innate and allergic inflammation was quantified. RESULTS: RWPE stimulated MD2-dependent NF-κB activation and CXCL secretion. Likewise, Bermuda, rye, timothy, pigweed, Russian thistle, cottonwood, walnut, and CDE stimulated MD2-dependent CXCL secretion. RWPE and CDE challenge induced MD2-dependent and CD14-independent innate neutrophil recruitment. RWPE induced MD2-dependent allergic sensitization and airway inflammation. CONCLUSIONS: MD2 plays an important role in induction of allergic sensitization to cat dander and common pollens relevant to human allergic diseases.


Assuntos
Alérgenos/imunologia , Alérgenos Animais/imunologia , Antígeno 96 de Linfócito/imunologia , Pólen/imunologia , Hipersensibilidade Respiratória/imunologia , Animais , Antígenos de Plantas/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Gatos/imunologia , Linhagem Celular , Citocinas/imunologia , Humanos , Imunidade Inata , Pulmão/imunologia , Pulmão/metabolismo , Antígeno 96 de Linfócito/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucinas/metabolismo , NF-kappa B/imunologia , Extratos Vegetais/imunologia , RNA Mensageiro/metabolismo
7.
Am J Respir Cell Mol Biol ; 54(1): 81-90, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26086549

RESUMO

Neutrophil recruitment is a hallmark of rapid innate immune responses. Exposure of airways of naive mice to pollens rapidly induces neutrophil recruitment. The innate mechanisms that regulate pollen-induced neutrophil recruitment and the contribution of this neutrophilic response to subsequent induction of allergic sensitization and inflammation need to be elucidated. Here we show that ragweed pollen extract (RWPE) challenge in naive mice induces C-X-C motif ligand (CXCL) chemokine synthesis, which stimulates chemokine (C-X-C motif) receptor 2 (CXCR2)-dependent recruitment of neutrophils into the airways. Deletion of Toll-like receptor 4 (TLR4) abolishes CXCL chemokine secretion and neutrophil recruitment induced by a single RWPE challenge and inhibits induction of allergic sensitization and airway inflammation after repeated exposures to RWPE. Forced induction of CXCL chemokine secretion and neutrophil recruitment in mice lacking TLR4 also reconstitutes the ability of multiple challenges of RWPE to induce allergic airway inflammation. Blocking RWPE-induced neutrophil recruitment in wild-type mice by administration of a CXCR2 inhibitor inhibits the ability of repeated exposures to RWPE to stimulate allergic sensitization and airway inflammation. Administration of neutrophils derived from naive donor mice into the airways of Tlr4 knockout recipient mice after each repeated RWPE challenge reconstitutes allergic sensitization and inflammation in these mice. Together these observations indicate that pollen-induced recruitment of neutrophils is TLR4 and CXCR2 dependent and that recruitment of neutrophils is a critical rate-limiting event that stimulates induction of allergic sensitization and airway inflammation. Inhibiting pollen-induced recruitment of neutrophils, such as by administration of CXCR2 antagonists, may be a novel strategy to prevent initiation of pollen-induced allergic airway inflammation.


Assuntos
Antígenos de Plantas/imunologia , Imunidade Inata , Pulmão/imunologia , Infiltração de Neutrófilos , Neutrófilos/imunologia , Extratos Vegetais/imunologia , Pneumonia/imunologia , Hipersensibilidade Respiratória/imunologia , Animais , Antialérgicos/farmacologia , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Humanos , Imunidade Inata/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ativação de Neutrófilo , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Pneumonia/metabolismo , Pneumonia/prevenção & controle , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/imunologia , Receptores de Interleucina-8B/metabolismo , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/prevenção & controle , Fatores de Tempo , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética
8.
J Biol Chem ; 290(41): 24636-48, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26245904

RESUMO

Why mammalian cells possess multiple DNA glycosylases (DGs) with overlapping substrate ranges for repairing oxidatively damaged bases via the base excision repair (BER) pathway is a long-standing question. To determine the biological role of these DGs, null animal models have been generated. Here, we report the generation and characterization of mice lacking Neil2 (Nei-like 2). As in mice deficient in each of the other four oxidized base-specific DGs (OGG1, NTH1, NEIL1, and NEIL3), Neil2-null mice show no overt phenotype. However, middle-aged to old Neil2-null mice show the accumulation of oxidative genomic damage, mostly in the transcribed regions. Immuno-pulldown analysis from wild-type (WT) mouse tissue showed the association of NEIL2 with RNA polymerase II, along with Cockayne syndrome group B protein, TFIIH, and other BER proteins. Chromatin immunoprecipitation analysis from mouse tissue showed co-occupancy of NEIL2 and RNA polymerase II only on the transcribed genes, consistent with our earlier in vitro findings on NEIL2's role in transcription-coupled BER. This study provides the first in vivo evidence of genomic region-specific repair in mammals. Furthermore, telomere loss and genomic instability were observed at a higher frequency in embryonic fibroblasts from Neil2-null mice than from the WT. Moreover, Neil2-null mice are much more responsive to inflammatory agents than WT mice. Taken together, our results underscore the importance of NEIL2 in protecting mammals from the development of various pathologies that are linked to genomic instability and/or inflammation. NEIL2 is thus likely to play an important role in long term genomic maintenance, particularly in long-lived mammals such as humans.


Assuntos
DNA Glicosilases/deficiência , DNA Glicosilases/genética , DNA/metabolismo , Genoma/genética , Transcrição Gênica , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Linhagem Celular , DNA/genética , Dano ao DNA , Técnicas de Inativação de Genes , Instabilidade Genômica , Homeostase , Humanos , Inflamação/genética , Inflamação/metabolismo , Camundongos , Oxirredução , RNA Polimerase II/metabolismo , Telômero/genética
9.
J Immunol ; 192(5): 2384-94, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24489103

RESUMO

Among the insidious DNA base lesions, 8-oxo-7,8-dihydroguanine (8-oxoG) is one of the most abundant, a lesion that arises through the attack by reactive oxygen species on guanine, especially when located in cis-regulatory elements. 8-oxoG is repaired by the 8-oxoguanine glycosylase 1 (OGG1)-initiated DNA base excision repair pathway. In this study, we investigated whether 8-oxoG repair by OGG1 in promoter regions is compatible with a prompt gene expression and a host innate immune response. For this purpose, we used a mouse model of airway inflammation, supplemented with cell cultures, chromatin immunoprecipitation, small interfering RNA knockdown, real-time PCR, and comet and reporter transcription assays. Our data show that exposure of cells to TNF-α altered cellular redox, increased the 8-oxoG level in DNA, recruited OGG1 to promoter sequences, and transiently inhibited base excision repair of 8-oxoG. Promoter-associated OGG1 then enhanced NF-κB/RelA binding to cis-elements and facilitated recruitment of specificity protein 1, transcription initiation factor II-D, and p-RNA polymerase II, resulting in the rapid expression of chemokines/cytokines and inflammatory cell accumulation in mouse airways. Small interfering RNA depletion of OGG1 or prevention of guanine oxidation significantly decreased TNF-α-induced inflammatory responses. Taken together, these results show that nonproductive binding of OGG1 to 8-oxoG in promoter sequences could be an epigenetic mechanism to modulate gene expression for a prompt innate immune response.


Assuntos
Citocinas/imunologia , DNA Glicosilases/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Elementos de Resposta/imunologia , Fatores de Transcrição/imunologia , Animais , Citocinas/genética , DNA Glicosilases/genética , Feminino , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
10.
J Immunol ; 193(9): 4643-53, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25267977

RESUMO

8-Oxoguanine-DNA glycosylase-1 (OGG1) is the primary enzyme for repairing 7,8-dihydro-8-oxoguanine (8-oxoG) via the DNA base excision repair pathway (OGG1-BER). Accumulation of 8-oxoG in the genomic DNA leads to genetic instability and carcinogenesis and is thought to contribute to the worsening of various inflammatory and disease processes. However, the disease mechanism is unknown. In this study, we proposed that the mechanistic link between OGG1-BER and proinflammatory gene expression is OGG1's guanine nucleotide exchange factor activity, acquired after interaction with the 8-oxoG base and consequent activation of the small GTPase RAS. To test this hypothesis, we used BALB/c mice expressing or deficient in OGG1 in their airway epithelium and various molecular biological approaches, including active RAS pulldown, reporter and Comet assays, small interfering RNA-mediated depletion of gene expression, quantitative RT-PCR, and immunoblotting. We report that the OGG1-initiated repair of oxidatively damaged DNA is a prerequisite for GDP → GTP exchange, KRAS-GTP-driven signaling via MAP kinases and PI3 kinases and mitogen-stress-related kinase-1 for NF-κB activation, proinflammatory chemokine/cytokine expression, and inflammatory cell recruitment to the airways. Mice deficient in OGG1-BER showed significantly decreased immune responses, whereas a lack of other Nei-like DNA glycosylases (i.e., NEIL1 and NEIL2) had no significant effect. These data unveil a previously unidentified role of OGG1-driven DNA BER in the generation of endogenous signals for inflammation in the innate signaling pathway.


Assuntos
DNA Glicosilases/metabolismo , Imunidade Inata , Inflamação/imunologia , Inflamação/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Dano ao DNA , DNA Glicosilases/deficiência , DNA Glicosilases/genética , Reparo do DNA , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Ativação Transcricional
11.
Mediators Inflamm ; 2016: 3762561, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27524866

RESUMO

Asthma is characterized by reversible airway narrowing, shortness of breath, wheezing, coughing, and other symptoms driven by chronic inflammatory processes, commonly triggered by allergens. In 90% of asthmatics, most of these symptoms can also be triggered by intense physical activities and severely exacerbated by environmental factors. This condition is known as exercise-induced asthma (EIA). Current theories explaining EIA pathogenesis involve osmotic and/or thermal alterations in the airways caused by changes in respiratory airflow during exercise. These changes, along with existing airway inflammatory conditions, are associated with increased cellular levels of reactive oxygen species (ROS) affecting important biomolecules including DNA, although the underlying molecular mechanisms have not been completely elucidated. One of the most abundant oxidative DNA lesions is 8-oxoguanine (8-oxoG), which is repaired by 8-oxoguanine DNA glycosylase 1 (OGG1) during the base excision repair (BER) pathway. Whole-genome expression analyses suggest a cellular response to OGG1-BER, involving genes that may have a role in the pathophysiology of EIA leading to mast cell degranulation, airway hyperresponsiveness, and bronchoconstriction. Accordingly, this review discusses a potential new hypothesis in which OGG1-BER-induced gene expression is associated with EIA symptoms.


Assuntos
Asma/metabolismo , DNA Glicosilases/metabolismo , Reparo do DNA , Exercício Físico , Guanina/análogos & derivados , Animais , Broncoconstrição , DNA/análise , Guanina/química , Humanos , Inflamação , Peroxidação de Lipídeos , Mastócitos/citologia , Camundongos , Estresse Oxidativo , Condicionamento Físico Animal , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
12.
Int J Mol Sci ; 15(9): 16975-97, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25250913

RESUMO

Many, if not all, environmental pollutants/chemicals and infectious agents increase intracellular levels of reactive oxygen species (ROS) at the site of exposure. ROS not only function as intracellular signaling entities, but also induce damage to cellular molecules including DNA. Among the several dozen ROS-induced DNA base lesions generated in the genome, 8-oxo-7,8-dihydroguanine (8-oxoG) is one of the most abundant because of guanine's lowest redox potential among DNA bases. In mammalian cells, 8-oxoG is repaired by the 8-oxoguanine DNA glycosylase-1 (OGG1)-initiated DNA base excision repair pathway (OGG1-BER). Accumulation of 8-oxoG in DNA has traditionally been associated with mutagenesis, as well as various human diseases and aging processes, while the free 8-oxoG base in body fluids is one of the best biomarkers of ongoing pathophysiological processes. In this review, we discuss the biological significance of the 8-oxoG base and particularly the role of OGG1-BER in the activation of small GTPases and changes in gene expression, including those that regulate pro-inflammatory chemokines/cytokines and cause inflammation.


Assuntos
DNA Glicosilases/fisiologia , Reparo do DNA/fisiologia , Guanina/análogos & derivados , Inflamação/enzimologia , Animais , Líquidos Corporais/química , Doença Crônica , Citocinas/biossíntese , Citocinas/genética , Dano ao DNA , DNA Glicosilases/deficiência , DNA Glicosilases/genética , Poluentes Ambientais/toxicidade , Ativação Enzimática , Células Epiteliais/enzimologia , Células Epiteliais/patologia , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica , Guanina/metabolismo , Humanos , Inflamação/genética , Inflamação/patologia , Pneumopatias/enzimologia , Pneumopatias/etiologia , Pneumopatias/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Mutagênese , Estresse Oxidativo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Sistema Respiratório/enzimologia , Sistema Respiratório/patologia
13.
J Biol Chem ; 287(25): 20769-73, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22568941

RESUMO

8-Oxo-7,8-dihydroguanine (8-oxoG), arguably the most abundant base lesion induced in mammalian genomes by reactive oxygen species, is repaired via the base excision repair pathway that is initiated with the excision of 8-oxoG by OGG1. Here we show that OGG1 binds the 8-oxoG base with high affinity and that the complex then interacts with canonical Ras family GTPases to catalyze replacement of GDP with GTP, thus serving as a guanine nuclear exchange factor. OGG1-mediated activation of Ras leads to phosphorylation of the mitogen-activated kinases MEK1,2/ERK1,2 and increasing downstream gene expression. These studies document for the first time that in addition to its role in repairing oxidized purines, OGG1 has an independent guanine nuclear exchange factor activity when bound to 8-oxoG.


Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA/fisiologia , Fibroblastos/metabolismo , Guanina/análogos & derivados , Sistema de Sinalização das MAP Quinases/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas ras/metabolismo , DNA Glicosilases/genética , Fibroblastos/citologia , Genoma Humano/fisiologia , Guanina/metabolismo , Guanosina Difosfato/genética , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Fosforilação/fisiologia , Proteínas ras/genética
15.
Cell Rep ; 38(10): 110434, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263596

RESUMO

Type I interferons (IFN-I) are essential to establish antiviral innate immunity. Unanchored (or free) polyubiquitin (poly-Ub) has been shown to regulate IFN-I responses. However, few unanchored poly-Ub interactors are known. To identify factors regulated by unanchored poly-Ub in a physiological setting, we developed an approach to isolate unanchored poly-Ub from lung tissue. We identified the RNA helicase DHX16 as a potential pattern recognition receptor (PRR). Silencing of DHX16 in cells and in vivo diminished IFN-I responses against influenza virus. These effects extended to members of other virus families, including Zika and SARS-CoV-2. DHX16-dependent IFN-I production requires RIG-I and unanchored K48-poly-Ub synthesized by the E3-Ub ligase TRIM6. DHX16 recognizes a signal in influenza RNA segments that undergo splicing and requires its RNA helicase motif for direct, high-affinity interactions with specific viral RNAs. Our study establishes DHX16 as a PRR that partners with RIG-I for optimal activation of antiviral immunity requiring unanchored poly-Ub.


Assuntos
Proteína DEAD-box 58 , Interferon Tipo I , RNA Helicases , RNA Viral , Receptores Imunológicos , Infecção por Zika virus , Zika virus , COVID-19 , Proteína DEAD-box 58/imunologia , Humanos , Imunidade Inata , Interferon Tipo I/imunologia , RNA Helicases/imunologia , Receptores Imunológicos/imunologia , SARS-CoV-2 , Proteínas com Motivo Tripartido , Zika virus/genética , Infecção por Zika virus/imunologia
16.
Respir Res ; 12: 145, 2011 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-22054012

RESUMO

BACKGROUND: Childhood hospitalization related to asthma remains at historically high levels, and its incidence is on the rise world-wide. Previously, we have demonstrated that aldose reductase (AR), a regulatory enzyme of polyol pathway, is a major mediator of allergen-induced asthma pathogenesis in mouse models. Here, using AR null (AR-/-) mice we have investigated the effect of AR deficiency on the pathogenesis of ragweed pollen extract (RWE)-induced allergic asthma in mice and also examined the efficacy of enteral administration of highly specific AR inhibitor, fidarestat. METHODS: The wild type (WT) and AR-/- mice were sensitized and challenged with RWE to induce allergic asthma. AR inhibitor, fidarestat was administered orally. Airway hyper-responsiveness was measured in unrestrained animals using whole body plethysmography. Mucin levels and Th2 cytokine in broncho-alveolar lavage (BAL) were determined using mouse anti-Muc5A/C ELISA kit and multiplex cytokine array, respectively. Eosinophils infiltration and goblet cells were assessed by H&E and periodic acid Schiff (PAS)-staining of formalin-fixed, paraffin-embedded lung sections. T regulatory cells were assessed in spleen derived CD4+CD25+ T cells population. RESULTS: Deficiency of AR in mice led to significantly decreased PENH, a marker of airway hyper-responsiveness, metaplasia of airway epithelial cells and mucus hyper-secretion following RWE-challenge. This was accompanied by a dramatic decrease in infiltration of eosinophils into sub-epithelium of lung as well as in BAL and release of Th2 cytokines in response to RWE-challenge of AR-/- mice. Further, enteral administration of fidarestat significantly prevented eosinophils infiltration, airway hyper-responsiveness and also markedly increased population of T regulatory (CD4+CD25+FoxP3+) cells as compared to RWE-sensitized and challenged mice not treated with fidarestat. CONCLUSION: Our results using AR-/- mice strongly suggest the role of AR in allergic asthma pathogenesis and effectiveness of oral administration of AR inhibitor in RWE-induced asthma in mice supports the use of AR inhibitors in the treatment of allergic asthma.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Asma/enzimologia , Asma/prevenção & controle , Imidazolidinas/administração & dosagem , Pólen , Rinite Alérgica Sazonal/enzimologia , Rinite Alérgica Sazonal/prevenção & controle , Aldeído Redutase/deficiência , Aldeído Redutase/metabolismo , Ambrosia/química , Animais , Camundongos , Camundongos Knockout , Extratos Vegetais , Resultado do Tratamento
17.
J Immunol ; 183(8): 5379-87, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19786549

RESUMO

The prevalence of allergies and asthma among the world's population has been steadily increasing due to environmental factors. It has been described that exposure to ozone, diesel exhaust particles, or tobacco smoke exacerbates allergic inflammation in the lungs. These environmental oxidants increase the levels of cellular reactive oxygen species (ROS) and induce mitochondrial dysfunction in the airway epithelium. In this study, we investigated the involvement of preexisting mitochondrial dysfunction in the exacerbation of allergic airway inflammation. After cellular oxidative insult induced by ragweed pollen extract (RWE) exposure, we have identified nine oxidatively damaged mitochondrial respiratory chain-complex and associated proteins. Out of these, the ubiquinol-cytochrome c reductase core II protein (UQCRC2) was found to be implicated in mitochondrial ROS generation from respiratory complex III. Mitochondrial dysfunction induced by deficiency of UQCRC2 in airway epithelium of sensitized BALB/c mice prior the RWE challenge increased the Ag-induced accumulation of eosinophils, mucin levels in the airways, and bronchial hyperresponsiveness. Deficiency of UQCRC1, another oxidative damage-sensitive complex III protein, did not significantly alter cellular ROS levels or the intensity of RWE-induced airway inflammation. These observations suggest that preexisting mitochondrial dysfunction induced by oxidant environmental pollutants is responsible for the severe symptoms in allergic airway inflammation. These data also imply that mitochondrial defects could be risk factors and may be responsible for severe allergic disorders in atopic individuals.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Inflamação/imunologia , Mitocôndrias/imunologia , Pólen/imunologia , Espécies Reativas de Oxigênio/metabolismo , Hipersensibilidade Respiratória/imunologia , Alérgenos/imunologia , Ambrosia/imunologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Complexo III da Cadeia de Transporte de Elétrons/imunologia , Humanos , Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Oligonucleotídeos Antissenso/imunologia , Oligonucleotídeos Antissenso/metabolismo , Extratos Vegetais/imunologia , Espécies Reativas de Oxigênio/imunologia , Explosão Respiratória/imunologia , Hipersensibilidade Respiratória/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo
18.
J Immunol ; 183(7): 4723-32, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19752229

RESUMO

Airway inflammation induced by reactive oxygen species-mediated activation of redox-sensitive transcription factors is the hallmark of asthma, a prevalent chronic respiratory disease. In various cellular and animal models, we have recently demonstrated that, in response to multiple stimuli, aldose reductase (AR) regulates the inflammatory signals mediated by NF-kappaB. Because NF-kappaB-mediated inflammation is a major characteristic of asthma pathogenesis, we have investigated the effect of AR inhibition on NF-kappaB and various inflammatory markers in cellular and animal models of asthma using primary human small airway epithelial cells and OVA-sensitized/challenged C57BL/6 mice, respectively. We observed that pharmacological inhibition or genetic ablation of AR by small interfering RNA prevented TNF-alpha- as well as LPS-induced apoptosis; reactive oxygen species generation; synthesis of inflammatory markers IL-6, IL-8, and PGE(2); and activation of NF-kappaB and AP-1 in small airway epithelial cells. In OVA-challenged mice, we observed that administration of an AR inhibitor markedly reduced airway hyperresponsiveness, IgE levels, eisonophils infiltration, and release of Th2 type cytokines in the airway. Our results indicate that AR inhibitors may offer a novel therapeutic approach to treat inflammatory airway diseases such as asthma.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Asma/imunologia , Asma/prevenção & controle , Citocinas/antagonistas & inibidores , Mediadores da Inflamação/antagonistas & inibidores , Ovalbumina/toxicidade , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Células Th2/imunologia , Aldeído Redutase/fisiologia , Animais , Asma/enzimologia , Asma/patologia , Brônquios/enzimologia , Brônquios/imunologia , Brônquios/metabolismo , Brônquios/patologia , Células Cultivadas , Galinhas , Citocinas/biossíntese , Citocinas/genética , Citotoxicidade Imunológica/genética , Regulação da Expressão Gênica/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/farmacologia , Mucosa Respiratória/enzimologia , Mucosa Respiratória/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células Th2/enzimologia , Células Th2/metabolismo
19.
Cell Death Dis ; 11(6): 444, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518230

RESUMO

The skin is a high turnover organ, and its constant renewal depends on the rapid proliferation of its progenitor cells. The energy requirement for these metabolically active cells is met by mitochondrial respiration, an ATP generating process driven by a series of protein complexes collectively known as the electron transport chain (ETC) that is located on the inner membrane of the mitochondria. However, reactive oxygen species (ROS) like superoxide, singlet oxygen, peroxides are inevitably produced during respiration and disrupt macromolecular and cellular structures if not quenched by the antioxidant system. The oxidative damage caused by mitochondrial ROS production has been established as the molecular basis of multiple pathophysiological conditions, including aging and cancer. Not surprisingly, the mitochondria are the primary organelle affected during chronological and UV-induced skin aging, the phenotypic manifestations of which are the direct consequence of mitochondrial dysfunction. Also, deletions and other aberrations in the mitochondrial DNA (mtDNA) are frequent in photo-aged skin and skin cancer lesions. Recent studies have revealed a more innate role of the mitochondria in maintaining skin homeostasis and pigmentation, which are affected when the essential mitochondrial functions are impaired. Some common and rare skin disorders have a mitochondrial involvement and include dermal manifestations of primary mitochondrial diseases as well as congenital skin diseases caused by damaged mitochondria. With studies increasingly supporting the close association between mitochondria and skin health, its therapeutic targeting in the skin-either via an ATP production boost or free radical scavenging-has gained attention from clinicians and aestheticians alike. Numerous bioactive compounds have been identified that improve mitochondrial functions and have proved effective against aged and diseased skin. In this review, we discuss the essential role of mitochondria in regulating normal and abnormal skin physiology and the possibility of targeting this organelle in various skin disorders.


Assuntos
Mitocôndrias/metabolismo , Envelhecimento da Pele/patologia , Dermatopatias/metabolismo , Dermatopatias/patologia , Pele/metabolismo , Pele/patologia , Animais , Homeostase , Humanos , Regeneração
20.
Int Arch Allergy Immunol ; 146(4): 298-306, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18367843

RESUMO

BACKGROUND: Colostrinin (CLN), isolated from mothers' pre-milk fluid (colostrum), is a uniform mixture of low-molecular-weight, proline-rich polypeptides. CLN induces neurite outgrowth of pheochromocytoma cells, extends the lifespan of diploid fibroblast cells, inhibits beta-amyloid-induced apoptosis and improves cognitive functions when administered to Alzheimer's disease patients. OBJECTIVE: The aim of this study was to investigate potential allergic responses to CLN and its impact on allergic sensitization and inflammation caused by common allergens. METHODS: We used a well-characterized mouse model of allergic airway inflammation. Changes in IgE/IgG1 and mucin levels, airway eosinophilia and hyperreactivity to methacholine were determined by ELISA, differential cell counting and whole-body plethysmography, respectively. RESULTS: CLN did not increase IgE/IgG1 levels or induce cutaneous hypersensitivity reaction, airway inflammation and mucin production. Importantly, CLN significantly (p < 0.001) decreased IgE/IgG1 production, airway eosinophilia, mucin production and hypersensitivity induced by allergenic extracts from ragweed pollen grains and house dust mites. CONCLUSION: CLN itself is non-allergenic; however, it is effective in preventing allergic responses to known indoor and outdoor allergens. These data support the safe application of CLN and its potential use in the prevention of allergic inflammation in humans.


Assuntos
Ambrosia/imunologia , Hipersensibilidade/tratamento farmacológico , Peptídeos/farmacologia , Pyroglyphidae/imunologia , Animais , Testes de Provocação Brônquica , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Hipersensibilidade/sangue , Hipersensibilidade/imunologia , Hipersensibilidade/prevenção & controle , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Endogâmicos BALB C , Mucinas/análise , Mucinas/imunologia , Pletismografia Total , Testes Cutâneos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa