Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Electron Mater ; 6(2): 1424-1433, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38435806

RESUMO

Resistive switching devices based on the Au/Ti/TiO2/Au stack were developed. In addition to standard electrical characterization by means of I-V curves, scanning thermal microscopy was employed to localize the hot spots on the top device surface (linked to conductive nanofilaments, CNFs) and perform in-operando tracking of temperature in such spots. In this way, electrical and thermal responses can be simultaneously recorded and related to each other. In a complementary way, a model for device simulation (based on COMSOL Multiphysics) was implemented in order to link the measured temperature to simulated device temperature maps. The data obtained were employed to calculate the thermal resistance to be used in compact models, such as the Stanford model, for circuit simulation. The thermal resistance extraction technique presented in this work is based on electrical and thermal measurements instead of being indirectly supported by a single fitting of the electrical response (using just I-V curves), as usual. Besides, the set and reset voltages were calculated from the complete I-V curve resistive switching series through different automatic numerical methods to assess the device variability. The series resistance was also obtained from experimental measurements, whose value is also incorporated into a compact model enhanced version.

2.
Micromachines (Basel) ; 14(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985037

RESUMO

A methodology to estimate the device temperature in resistive random access memories (RRAMs) is presented. Unipolar devices, which are known to be highly influenced by thermal effects in their resistive switching operation, are employed to develop the technique. A 3D RRAM simulator is used to fit experimental data and obtain the maximum and average temperatures of the conductive filaments (CFs) that are responsible for the switching behavior. It is found that the experimental CFs temperature corresponds to the maximum simulated temperatures obtained at the narrowest sections of the CFs. These temperature values can be used to improve compact models for circuit simulation purposes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa