Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Anal Biochem ; 693: 115595, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38909770

RESUMO

Monitoring pharmaceutical drugs in various mediums is crucial to mitigate adverse effects. This study presents a chemical sensor using an oval-like zinc oxide (ZnO) nanostructure for electrochemical detection of nalbuphine. The ZnO nanostructure, produced via an efficient sol-gel technique, was extensively characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-visible spectrophotometry, and fourier transform infrared spectroscopy (FTIR). A slurry of the ZnO nanostructure in a binder was applied to a glassy carbon electrode (GCE). The sensor's responsiveness to nalbuphine was assessed using linear sweep voltammetry (LSV), achieving optimal performance by fine-tuning the pH. The sensor demonstrated a proportional response to nalbuphine concentrations up to 150.0 nM with a good regression coefficient (R2) and a detection limit of 6.20 nM (S/N ratio of 3). Selectivity was validated against various interfering substances, and efficacy was confirmed through real sample analysis, highlighting the sensor's successful application for nalbuphine detection.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Nalbufina , Nanoestruturas , Óxido de Zinco , Óxido de Zinco/química , Nalbufina/análise , Técnicas Eletroquímicas/métodos , Nanoestruturas/química , Limite de Detecção
2.
Artigo em Inglês | MEDLINE | ID: mdl-39030281

RESUMO

Bifenthrin (BF) is a broad-spectrum type I pyrethroid insecticide that acts on insects by impairing the nervous system and inhibiting ATPase activity, and it has toxic effects on non-target organisms and high persistence in the environment. This study aimed to determine the potential of six different fungi, including Pseudozyma hubeiensis PA, Trichoderma reesei PF, Trichoderma koningiopsis PD, Purpureocillium lilacinum ACE3, Talaromyces pinophilus ACE4, and Aspergillus niger AJ-F3, to degrade BF. Three different concentrations of BF, including 0.1%, 0.2%, and 0.3% w/v, were used in the sensitivity testing that revealed a significant (p ≤ 0.01) impact of BF on fungal growth. Enzymatic assays demonstrated that both intracellular and extracellular carboxylesterases hydrolyzed BF with the enzymatic activity of up to 175 ± 3 U (µmol/min) and 45 ± 1 U, respectively. All tested fungi were capable of utilizing BF as a sole carbon source producing 0.06 ± 0.01 to 0.45 ± 0.01 mg dry biomass per mg BF. Moreover, the presence of PytH was determined in the fungi using bioinformatics tools and was found in A. niger, T. pinophilus, T. reesei, and P. lilacinum. 3D structures of the PytH homologs were predicted using AlphaFold2, and their intermolecular interactions with pyrethroids were determined using MOE. All the homologs interacted with different pyrethroids with a binding energy of lesser than - 10 kcal/mol. Based on the study, it was concluded that the investigated fungi have a greater potential for the biodegradation of BF.

3.
Mol Biol Rep ; 51(1): 18, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099977

RESUMO

BACKGROUND: To tolerate salt and water-deficit stress, the plant adapts to the adverse environment by regulating its metabolism and expressing certain stress-induced metabolic pathways. This research analyzed the relative expression of four pea genes (P5CR, PAL1, SOD, and POX) in three pea varieties (Climax, Green grass, and Meteor) under different levels of salt and water-deficit stress. METHODS AND RESULTS: The experiments on salt stress and water-deficit stress were carried out within greenhouse settings under controlled environment. The saturation percentage was employed to create artificial salinity conditions: Control without NaCl treatment, Treatment 1: 50 mM NaCl treatment, Treatment 2: 75 mM NaCl treatment, and Treatment 3: 100 mM NaCl treatment. Field capacity (FC) was used for the development of artificial water-deficit treatments in the pots, i.e., Treatment 1 (Control; water application 100% of FC), Treatment 2 (water application 75% of FC), and Treatment 3 (water application 50% of FC). Pea genes involved in biosynthetic pathways of proline, flavonoids, and enzymatic antioxidant enzymes including P5CR, PAL1, SOD, and POX were selected based on literature. Quantitative real-time PCR using cDNA as a template was used to analyze the gene expression. Pea genes were analyzed for phylogenetic analysis in closely related crops having similarity percent identity 80% and above. In silico characterization of selected proteins including the family classification was done by the NCBI CDD and INTERPRO online servers. Results from RT-qPCR analysis showed increased expression of P5CR, PAL1, and POX genes, while SOD gene expression decreased under both stresses. Climax exhibited superior stress tolerance with elevated expression of P5CR and PAL1, while Meteor showed better tolerance through increased POX expression. Phylogenetic analysis revealed common ancestry with other species like chickpea, red clover, mung bean, and barrel clover, suggesting the cross relationship among these plant species. Conserved domain analysis of respective proteins revealed that these proteins contain PLNO 2688, PLN02457, Cu-Zn Superoxide dismutase, and secretory peroxidase conserved domains. Furthermore, protein family classification indicated that the oxidation-reduction process is the most common chemical process involved in these stresses given to pea plant which validates the relationship of these proteins. CONCLUSIONS: Salt and water-deficit stresses trigger distinct metabolic pathways, leading to the up-regulation of specific genes and the synthesis of corresponding proteins. These findings further emphasize the conservation of stress-tolerance-related genes and proteins across various plant species. This knowledge enhances our understanding of plant adaptation to stress and offers opportunities for developing strategies to improve stress resilience in crops, thereby addressing global food security challenges.


Assuntos
Cloreto de Sódio , /genética , Filogenia , Desidratação , Água , Produtos Agrícolas , Superóxido Dismutase
4.
Sensors (Basel) ; 23(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139679

RESUMO

The material extrusion 3D printing process known as fused deposition modeling (FDM) has recently gained relevance in the additive manufacturing industry for large-scale part production. However, improving the real-time monitoring of the process in terms of its mechanical properties remains important to extend the lifespan of numerous critical applications. To enhance the monitoring of mechanical properties during printing, it is necessary to understand the relationship between temperature profiles and ultimate tensile strength (UTS). This study uses a cyber-physical production system (CPPS) to analyze the impact of four key thermal parameters on the tensile properties of polylactic acid (PLA). Layer thickness, printing speed, and extrusion temperature are the most influential factors, while bed temperature has less impact. The Taguchi L-9 array and the full factorial design of experiments were implemented along with the deposited line's local fused temperature profile analysis. Furthermore, correlations between temperature profiles with the bonding strength during layer adhesion and part solidification can be stated. The results showed that layer thickness is the most important factor, followed by printing speed and extrusion temperature, with very close influence between each other. The lowest impact is attributed to bed temperature. In the experiments, the UTS values varied from 46.38 MPa to 56.19 MPa. This represents an increase in the UTS of around 17% from the same material and printing design conditions but different temperature profiles. Additionally, it was possible to observe that the influence of the parameter variations was not linear in terms of the UTS value or temperature profiles. For example, the increase in the UTS at the 0.6 mm layer thickness was around four times greater than the increase at 0.4 mm. Finally, even when it was found that an increase in the layer temperature led to an increase in the value of the UTS, for some of the parameters, it could be observed that it was not the main factor that caused the UTS to increase. From the monitoring conditions analyzed, it was concluded that the material requires an optimal thermal transition between deposition, adhesion, and layer solidification in order to result in part components with good mechanical properties. A tracking or monitoring system, such as the one designed, can serve as a potential tool for reducing the anisotropy in part production in 3D printing systems.

5.
Environ Monit Assess ; 195(12): 1430, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940800

RESUMO

Industrial wastewater irrigation of agricultural crops can cause a lot of environmental and health problems in developing countries due to heavy metals deposition in agricultural soils as well as edible plant consumption by human beings. Therefore, this study was conducted to find out the heavy metals concentration in industrial wastewater and soil irrigated with that wastewater. In addition, the aim was to determine the impact of industrial wastewater irrigation on Parthenium hysterophorus and Zea mays genes involved in growth improvement and inhibition. For this purpose, plant samples from agriculture fields irrigated with wastewater from Hattar Industrial Estate (HIE) of Haripur, Pakistan, and control plants from non-contaminated soil irrigated with tape water were collected after 15 and 45 days of germination. Heavy metals concentration in the collected plant samples, wastewater, and soil was determined. The results revealed that the soil of the sample collection site was predominantly contaminated with Cr, Pb, Ni, Cu, Co, Zn, and Cd up to the concentrations of 38.98, 21.14, 46.01, 155.73, 12.50, 68.50, and 7.01 mg/kg, respectively. The concentrations of these heavy metals were found to surpass the permissible limit in normal agricultural soil. Expansins, cystatins (plant growth enhancers), and metacaspases (plant growth inhibitor) gene expression were studied through reverse transcription polymerase chain reaction. The results showed that the expression of these genes was higher in samples collected from wastewater-irrigated soils as compared to control. The expression of these genes was observed in 45 days old samples, 15 days old samples, and control. Taken together, this study suggests the use of Parthenium and maize for phytoremediation and that they should not be used for eating purposes if irrigated with industrial wastewater.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Águas Residuárias , Zea mays/metabolismo , Poluentes do Solo/análise , Monitoramento Ambiental , Metais Pesados/análise , Produtos Agrícolas/metabolismo , Solo , Irrigação Agrícola/métodos
6.
Anal Chem ; 94(25): 8867-8873, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35699939

RESUMO

Nanomaterial-based biosensors are a promising fit for portable and field-deployable diagnosis sensor devices due to their mass production, miniaturization, and integration capabilities. However, the fabrication of highly stable and reproducible biosensor devices is challenging. In this work, we grow a vertically oriented architecture of zinc oxide nanorods onto the active working area (i.e., the channel between the source and drain) of a field-effect transistor (FET) using a low-temperature hydrothermal method. The glucose oxidase enzyme was immobilized on the zinc oxide nanorod surface by a physical adsorption method to fabricate the electrolyte-gated FET-based glucose biosensor. The electrical properties of the electrolyte-gated FET biosensor were measured with different glucose concentrations. We found a linear increase in current up to 80 mM glucose concentration with high sensitivity (74.78 µA/mMcm2) and a low detection limit (∼0.05 mM). We illustrate a highly reproducible fabrication process of zinc oxide nanorod-based FETs, where vertically grown nanorods with a higher surface-to-volume ratio enhance the enzyme immobilization, provide a microenvironment for longer enzyme activity, and translate to better glucose sensing parameters. Additionally, our electrolyte-gated FET biosensor showed promising application in freshly drawn mouse blood samples. These findings suggest a great opportunity to translate into practical high-performance biosensors for a broad range of analytes.


Assuntos
Técnicas Biossensoriais , Nanotubos , Óxido de Zinco , Animais , Técnicas Biossensoriais/métodos , Eletrólitos , Glucose , Camundongos
7.
Anal Biochem ; 658: 114926, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183795

RESUMO

Bacteriocins exhibited a wide spectrum of antibacterial activity against different pathogens. The aim of current study was to characterize the bacteriocins produced by Bifidobacterium spp. isolated from ruminants. The Bifidobacterium isolates were identified as B. longum, B. pseudolongum, B. bifidum, B. thermophilum, B. boum, B. merycicum and B. ruminantium. Bacteriocins were found to be pH stable, heat resistant, highly diffusible, NaCl tolerant and resistant to UV radiations. SDS, EDTA and urea induced 14%, 21% and 24% bacteriocins activity loss. Modified MRS broth (1% tryptone, 1% yeast extract and 2% glucose) was found to be the best nutrient medium for optimal production of bacteriocins. Minimum inhibitory concentration (MIC) values varied from 300 µl/ml to 500 µl/ml and minimum bactericidal concentration (MBC) values ranged from 500 µl/ml to >500 µl/ml for E. coli and S. aureus respectively. The highest protein concentration (29.0248 mg/ml) was recorded for Bifidobacteria bacteriocin produced by B. longum. Tricine-Sodium Dodecyl Sulfate-Poly Acrylamide Gel Electrophoresis (SDS-PAGE) revealed that molecular weight of isolated bifidobacterial bacteriocins was in the range of 3.6 kDa-30 kDa. Current study indicated that bifidobacterial bacteriocins have considerable potential to be used as biopreservative.


Assuntos
Bacteriocinas , Bifidobacterium , Ruminantes , Animais , Acrilamidas , Antibacterianos/farmacologia , Antibacterianos/química , Bacteriocinas/farmacologia , Bacteriocinas/química , Ácido Edético , Escherichia coli , Glucose , Concentração de Íons de Hidrogênio , Ruminantes/microbiologia , Cloreto de Sódio , Dodecilsulfato de Sódio , Staphylococcus aureus , Ureia
8.
Sensors (Basel) ; 22(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36236490

RESUMO

The use of automation, Internet-of-Things (IoT), and smart technologies is being rapidly introduced into the development of agriculture. Technologies such as sensing, remote monitoring, and predictive tools have been used with the purpose of enhancing agriculture processes, aquaponics among them, and improving the quality of the products. Digital twinning enables the testing and implementing of improvements in the physical component through the implementation of computational tools in a 'twin' virtual environment. This paper presents a framework for the development of a digital twin for an aquaponic system. This framework is validated by developing a digital twin for the grow beds of an aquaponics system for real-time monitoring parameters, namely pH, electroconductivity, water temperature, relative humidity, air temperature, and light intensity, and supports the use of artificial intelligent techniques to, for example, predict the growth rate and fresh weight of the growing crops. The digital twin presented is based on IoT technology, databases, a centralized control of the system, and a virtual interface that allows users to have feedback control of the system while visualizing the state of the aquaponic system in real time.


Assuntos
Agricultura , Produtos Agrícolas , Inteligência Artificial , Hidroponia/métodos , Água
9.
Medicina (Kaunas) ; 58(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630096

RESUMO

Measles is an RNA virus infectious disease mainly seen in children. Despite the availability of an effective vaccine against measles, it remains a health issue in children. Although it is a self-limiting disease, it becomes severe in undernourished and immune-compromised individuals. Measles infection is associated with secondary infections by opportunistic bacteria due to the immunosuppressive effects of the measles virus. Recent reports highlight that measles infection erases the already existing immune memory of various pathogens. This review covers the incidence, pathogenesis, measles variants, clinical presentations, secondary infections, elimination of measles virus on a global scale, and especially the immune responses related to measles infection.


Assuntos
Coinfecção , Sarampo , Criança , Humanos , Incidência , Sarampo/epidemiologia , Sarampo/prevenção & controle
10.
Ecotoxicol Environ Saf ; 207: 111230, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32898815

RESUMO

Heavy metal like cadmium (Cd) is inessential and highly toxic and is posing serious environmental problems for agriculture worldwide. Presence of Cd gives rise to several physiological and structural disorders that leads to reduction in growth and performance of agricultural plants. Evidence related to subcellular distribution and accumulation of Cd is still enigmatic. Experiment was conducted using hydroponic culture to examine the subcellular accumulation of Cd in Spinacia oleracea L. leaves under Cd stress (50 µM and 100 µM); moreover, the Cd toxicity alleviation using 5 mM silicon (Si) was investigated. Our findings suggest that fresh and dry biomass, shoot and root length, leaf area and length of leaf declined when exposed to Cd stress (50 µM and 100 µM); however, an increase was noticed when Cd treated plants were supplied with Si (5 mM). The content of Ca2+, Mg2+ and Fe2+ in apoplastic washing fluid and symplasm were found to be lower in plants treated with alone Cd, when compared to control. Higher Cd2+:Ca2+, Cd2+:Fe2+ and Cd2+:Mg2+ ratios were detected under cadmium stress in both apoplast and symplast of leaves which were lowered by the addition of 5 mM Si. The novelty of the current study is the detection of increased apoplastic and symplastic Cd concentration in aerial part (i.e., spinach leaves) under alone Cd treatment which was considerably reduced when supplied with Si. Moreover, a noticeable increase in spinach growth and beneficial ionic concentrations suggest that Si can ameliorate the Cd stress in crop plants.


Assuntos
Cádmio/toxicidade , Poluentes do Solo/toxicidade , Spinacia oleracea/fisiologia , Agricultura , Biomassa , Folhas de Planta/química , Silício , Poluentes do Solo/análise , Frações Subcelulares/química
11.
Acta Virol ; 65(4): 390-401, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34796714

RESUMO

Liver cancer is the 5th most common cancer caused mainly due to the late detection of hepatitis. Therefore, the early detection of hepatitis through genetic markers boosts effective and remedial management. In addition, to determine the occurrence of hepatitis C virus (HCV), genotyping is indispensable as majority of hepatitis cases remain undiagnosed. The current study was designed to find the gene expression of proteases and proteases inhibitors in different hepatitis patients and to determine HCV genotypes mainly focusing on untypeable genotypes of HCV in Abbottabad, Pakistan. PCR was conducted to find the expression of proteases and protease inhibitors genes in hepatitis patients and healthy individuals. HCV genotyping was done by PCR based method and untypeable genotypes were sequenced and verified using online tools. Controlled individuals showed normal expression of cystatin C and leptin, low expression of cathepsin B while high expression of other studied genes including cathepsin D and G, TPP1 and serpin B1 could be seen. Hepatitis A patients showed high expression of leptin while other genes showed low expression. Hepatitis B patients revealed considerable variations in the cathepsin and cystatin C gene expression. Therefore, low cystatin C (high cathepsin B) and/or high cystatin C (low cathepsin B) levels can be regarded as a potential marker for hepatitis B. Hepatitis C infected patients showed high gene expression of cystatin C and leptin, so they could be useful markers for the diagnostics and prediction of the severity of HCV infections. While genotyping findings showed that about 45% of total PCR positive samples (110) were found to be of 3a genotype followed by 3b in 18%, 1a in 13.6% and 1b in 10%. About 9% of infections turned out to be mixed infections, whereas only 4.5% were untraceable by our genotyping system. Sequencing of untypeable genotypes and applying online tools revealed that the described untypeable genotypes of HCV were in fact variants of 3a genotype. Furthermore, full length characterization of these variants could help to classify them into types and subtypes. Keywords: hepatitis; genotyping; genes expression; proteases and protease inhibitors; ML; NJ.


Assuntos
Hepatite A , Hepatite C , Expressão Gênica , Genótipo , Hepacivirus/genética , Hepatite C/genética , Humanos , Paquistão , Peptídeo Hidrolases , Inibidores de Proteases , RNA Viral
12.
Plant Physiol ; 179(4): 1844-1860, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30723180

RESUMO

Arabidopsis (Arabidopsis thaliana) GARP (Golden2, ARR-B, Psr1) family transcription factors, GOLDEN2-LIKE1 and -2 (GLK1/2), function in different biological processes; however, whether and how these transcription factors modulate the response to abscisic acid (ABA) remain unknown. In this study, we used a glk1 glk2 double mutant to examine the role of GLK1/2 in the ABA response. The glk1 glk2 double mutant displayed ABA-hypersensitive phenotypes during seed germination and seedling development and an osmotic stress-resistant phenotype during seedling development. Genome-wide RNA sequencing analysis of the glk1 glk2 double mutant revealed that GLK1/2 regulate several ABA-responsive genes, including WRKY40, in the presence of ABA. Chromatin immunoprecipitation and gel retardation assays showed that GLK1/2 directly associate with the WRKY40 promoter via the recognition of a consensus sequence. Additionally, RNA sequencing analysis of the glk1 glk2 double mutant and wrky40 single mutant revealed that GLK1/2 and WRKY40 control a common set of downstream target genes in response to ABA. Furthermore, results of a genetic interaction test showed that the glk1 glk2 wrky40 triple mutant displayed similar ABA hypersensitivity to the wrky40 single mutant and the glk1 glk2 double mutant, while the glk1 glk2 wrky40 abi5-c (ABI5 CRISPR/Cas9 mutant) quadruple mutant displayed similar ABA hyposensitivity to the abi5-7 single mutant. Based on these results, we propose that the GLK1/2-WRKY40 transcription module plays a negative regulatory role in the ABA response.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Fatores de Transcrição/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Pressão Osmótica , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
New Phytol ; 223(3): 1372-1387, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31038749

RESUMO

Under dehydration in plants, antagonistic activities of histone 3 lysine 4 (H3K4) methyltransferase and histone demethylase maintain a dynamic and homeostatic state of gene expression by orientating transcriptional reprogramming toward growth or stress tolerance. However, the histone demethylase that specifically controls histone methylation homeostasis under dehydration stress remains unknown. Here, we document that a histone demethylase, JMJ17, belonging to the KDM5/JARID1 family, plays crucial roles in response to dehydration stress and abscisic acid (ABA) in Arabidopsis thaliana. jmj17 loss-of-function mutants displayed dehydration stress tolerance and ABA hypersensitivity in terms of stomatal closure. JMJ17 specifically demethylated H3K4me1/2/3 via conserved iron-binding amino acids in vitro and in vivo. Moreover, H3K4 demethylase activity of JMJ17 was required for dehydration stress response. Systematic combination of genome-wide chromatin immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq) and RNA-sequencing (RNA-seq) analyses revealed that a loss-of-function mutation in JMJ17 caused an ectopic increase in genome-wide H3K4me3 levels and activated a plethora of dehydration stress-responsive genes. Importantly, JMJ17 bound directly to the chromatin of OPEN STOMATA 1 (OST1) and demethylated H3K4me3 for the regulation of OST1 mRNA abundance, thereby modulating the dehydration stress response. Our results demonstrate a new function of a histone demethylase under dehydration stress in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Desidratação , Regulação da Expressão Gênica de Plantas , Mutação com Perda de Função/genética , Metilação , Especificidade de Órgãos/genética , Fenótipo , Frações Subcelulares/metabolismo
14.
Int J Phytoremediation ; 21(2): 71-83, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30656951

RESUMO

Soil pollution is an unavoidable evil; many crude-oil exploring communities have been identified to be the most ecologically impacted regions around the world due to hydrocarbon pollution and their concurrent health risks. Several clean-up technologies have been reported on the removal of hydrocarbons in polluted soils but most of them are either very expensive, require the integration of advanced mechanization and/or cannot be implemented in small scale. However, "Bioremediation" has been reported as an efficient, cost-effective and environment-friendly technology for clean-up of hydrocarbon"s contaminated soils. Here, we suggest the implementation of synergistic mechanism of bioremediation such as the use of rhizosphere mechanism which involves the actions of plant and microorganisms, which involves the exploitation of plant and microorganisms for effective and speedy remediation of hydrocarbon"s contaminated soils. In this mechanism, plant"s action is synergized with the soil microorganisms through the root rhizosphere to promote soil remediation. The microorganisms benefit from the root metabolites (exudates) and the plant in turn benefits from the microbial recycling/solubilizing of mineral nutrients. Harnessing the abilities of plants and microorganisms is a potential headway for cost-effective clean-up of hydrocarbon"s polluted sites; such technology could be very important in countries with great oil producing activities/records over many years but still developing.


Assuntos
Rizosfera , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Solo , Microbiologia do Solo
15.
Int J Phytoremediation ; 21(14): 1474-1485, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31264465

RESUMO

Giant reed (Arundo donax) has proved to be effective in detoxification, accumulation and tolerance of toxic metals. The present study explored the stress response of giant reed against Cu and Ni stress. The effect of metal stress was studied on dry weight, chlorophyll pigments antioxidant enzymes production and selected genes expression. The accumulation of heavy metals increased in a concentration-dependent manner and depicted toxicity symptoms in leaves beyond 75 mg/L of Cu or Ni. Oxidative stress was evident in giant reed under highest exposure of Ni and Cu which increased antioxidants activities (SOD, POD and CAT). It was observed that metal transport and detoxification were possible due to the expression of glutathione reductase, Natural Resistance-Associated Macrophage Protein (NRAMP) and Yellow Stripe-Like (YSL) genes. These insights into the genetic basis of a successful remediating plant species will be useful in understanding heavy metals tolerance in giant reed.


Assuntos
Metais Pesados , Antioxidantes , Biodegradação Ambiental , Estresse Oxidativo , Poaceae
16.
Plant Mol Biol ; 98(6): 495-506, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30406469

RESUMO

KEY MESSAGE: Trithorax-group Protein ARABIDOPSIS TRITHORAX5 modulates the glucose response. Glucose is an evolutionarily conserved modulator from unicellular microorganisms to multicellular animals and plants. Extensive studies have shown that the Trithorax-group proteins (TrxGs) play essential roles in different biological processes by affecting histone modifications and chromatin structures. However, whether TrxGs function in the glucose response and how they achieve the control of target genes in response to glucose signaling in plants remain unknown. Here, we show that the Trithorax-group Protein ARABIDOPSIS TRITHORAX5 (ATX5) affects the glucose response and signaling. atx5 loss-of-function mutants display glucose-oversensitive phenotypes compared to the wild-type (WT). Genome-wide RNA-sequencing analyses have revealed that ATX5 impacts the expression of a subset of glucose signaling responsive genes. Intriguingly, we have established that ATX5 directly controls the expression of HY1 by trimethylating H3 lysine 4 of the Arabidopsis Heme Oxygenase1 (HY1) locus. Glucose signaling causes the suppression of ATX5 activity and subsequently reduces the H3K4me3 levels at the HY1 locus, thereby leading to the increased expression of ABSCISIC ACID-INSENSITIVE4 (ABI4). This result suggests that an important ATX5-HY1-ABI4 regulatory module governs the glucose response. This idea is further supported by genetic evidence showing that an atx5 hy1-100 abi4 triple mutant showed a similar glucose-insensitive phenotype as compared to that of the abi4 single mutant. Our findings show that a novel ATX5-HY1-ABI4 module controls the glucose response in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Glucose/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Heme Oxigenase (Desciclizante)/genética , Histona-Lisina N-Metiltransferase/genética , Mutação , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/genética
17.
New Phytol ; 217(4): 1582-1597, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29250818

RESUMO

Trithorax-group proteins (TrxGs) play essential regulatory roles in chromatin modification to activate transcription. Although TrxGs have been shown to be extensively involved in the activation of developmental genes, how the specific TrxGs function in the dehydration and abscisic acid (ABA)-mediated modulation of downstream gene expression remains unknown. Here, we report that two evolutionarily conserved Arabidopsis thaliana TrxGs, ARABIDOPSIS TRITHORAX4 (ATX4) and ATX5, play essential roles in the drought stress response. atx4 and atx5 single loss-of-function mutants showed drought stress-tolerant and ABA-hypersensitive phenotypes during seed germination and seedling development, while the atx4 atx5 double mutant displayed further exacerbation of the phenotypes. Genome-wide RNA-sequencing analyses showed that ATX4 and ATX5 regulate the expression of genes functioning in dehydration stress. Intriguingly, ABA-HYPERSENSITIVE GERMINATION 3 (AHG3), an essential negative regulator of ABA signaling, acts genetically downstream of ATX4 and ATX5 in response to ABA. ATX4 and ATX5 directly bind to the AHG3 locus and trimethylate histone H3 of Lys 4 (H3K4). Moreover, ATX4 and ATX5 occupancies at AHG3 are dramatically increased under ABA treatment, and are also essential for RNA polymerase II (RNAPII) occupancies. Our findings reveal novel molecular functions of A. thaliana TrxGs in dehydration stress and ABA responses.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Ácido Abscísico/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Desidratação , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Loci Gênicos , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Mutação com Perda de Função/genética , Lisina/metabolismo , Metilação , Especificidade de Órgãos/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Estresse Fisiológico/genética , Transcrição Gênica/efeitos dos fármacos
18.
Crit Rev Microbiol ; 44(5): 590-608, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29790396

RESUMO

The early detection of Listeria monocytogenes (L. monocytogenes) and understanding the disease burden is of paramount interest. The failure to detect pathogenic bacteria in the food industry may have terrible consequences, and poses deleterious effects on human health. Therefore, integration of methods to detect and trace the route of pathogens along the entire food supply network might facilitate elucidation of the main contamination sources. Recent research interest has been oriented towards the development of rapid and affordable pathogen detection tools/techniques. An innovative and new approach like biosensors has been quite promising in revealing the foodborne pathogens. In spite of the existing knowledge, advanced research is still needed to substantiate the expeditious nature and sensitivity of biosensors for rapid and in situ analysis of foodborne pathogens. This review summarizes recent developments in optical, piezoelectric, cell-based, and electrochemical biosensors for Listeria sp. detection in clinical diagnostics, food analysis, and environmental monitoring, and also lists their drawbacks and advantages.


Assuntos
Técnicas Biossensoriais/métodos , Listeria monocytogenes/isolamento & purificação , Listeriose/microbiologia , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Humanos , Listeria monocytogenes/classificação , Listeria monocytogenes/genética , Listeria monocytogenes/crescimento & desenvolvimento
19.
Int J Phytoremediation ; 20(11): 1162-1167, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30156924

RESUMO

The effects of cadmium stress (0, 25, 50, 75, and 100 mg/L) on morpho-physiological features and selected genes (carotenoid hydroxilase, amidase, GR, bHLH, NRAMP and YSL) expression were demonstrated in Arundo donax L. The plants were assessed for Cd uptake and its effects on chlorophyll and antioxidants after 30 days of exposure. The expression of genes conferring metal tolerance was evaluated after 10 days of Cd exposure. The results showed a maximum Cd uptake in roots (872 mg/kg) followed by stem (734 mg/kg) and leaves (298 mg/kg) at highest supplied Cd concentration. The Cd uptake reduced dry weight, Chla, Chlb, and total Chl contents of giant reed. The SOD, CAT, POD activities and MDA content increased at the maximum Cd concentration over control. The highest genes expression for carotenoid hydroxylase, glutathione reductase and amidase was observed in plants exposed to 100 mg/L. However, differential bHLH gene expression and slightly increased gene expression of NRAMP was noted for different Cd treatments. Amidase expressed under Cd stress which is pioneer report in A. donax. These results provided insights into the mechanisms of A. donax tolerance and survival under Cd Stress.


Assuntos
Cádmio , Poaceae , Antioxidantes , Biodegradação Ambiental , Folhas de Planta , Raízes de Plantas
20.
J Environ Manage ; 200: 253-262, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28582748

RESUMO

Ability of a plant to develop different adaptive strategies can also determine its capability for effective soil remediation. In this study, influence of spent mushroom compost (SMC) was tested on the phytoremediation of black oil hydrocarbon polluted soil and the response of Megathyrsus maximus (guinea grass). Studies were carried out in microcosm conditions by mixing different concentration of SMC viz., 10, 20, 30 and 40% in a 5 kg of contaminated soil along with control. Seeds of M. maximus was sown in tray for two weeks and allowed to grow for height of 10 cm and transplanted in to the different experimental pots. Soil nutrient, heavy metal and PAH contents were analyzed before and after the experiment. Ecophysiological and anatomical responses due to the contaminants in the soil by M. Maximus were analyzed after 120 days. Phytomass efficiency, potential photosynthesis (Amax) and contents of chlorophylls (a and b) as well as the total chlorophyll along with anatomical evaluations were recorded. Plant alone (control) reduced the soil heavy metal and PAH contents but further improvements were observed in SMC treatments, similar results were also observed as regards to the plant's phytoremediation efficiency (PE), phytomass and potential photosynthetic rates (m mol O2 M-2S-1). The plant's root and shoot anatomical responses were enhanced in treatments compared to control, study infers that the treatment enhances the biostimulation and development of adaptive characteristics for M. maximus survival in contaminated soils and promotes its co-degradation of hydrocarbon. SMC supports remediation and as well enhances the anatomical evaluations, we therefore recommend the use of SMC on response of Megathyrsus maximus Jacq for remediation of petrochemical based phytoremediation.


Assuntos
Agaricales , Biodegradação Ambiental , Hidrocarbonetos , Poluentes do Solo , Compostagem , Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa