Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628780

RESUMO

Despite considerable breakthroughs in Parkinson's disease (PD) research, understanding of non-motor symptoms (NMS) in PD remains limited. The lack of basic level models that can properly recapitulate PD NMS either in vivo or in vitro complicates matters. Even so, recent research advances have identified cardiovascular NMS as being underestimated in PD. Considering that a cardiovascular phenotype reflects sympathetic autonomic dysregulation, cardiovascular symptoms of PD can play a pivotal role in understanding the pathogenesis of PD. In this study, we have reviewed clinical and non-clinical published papers with four key parameters: cardiovascular disease risks, electrocardiograms (ECG), neurocardiac lesions in PD, and fundamental electrophysiological studies that can be linked to the heart. We have highlighted the points and limitations that the reviewed articles have in common. ECG and pathological reports suggested that PD patients may undergo alterations in neurocardiac regulation. The pathological evidence also suggested that the hearts of PD patients were involved in alpha-synucleinopathy. Finally, there is to date little research available that addresses the electrophysiology of in vitro Parkinson's disease models. For future reference, research that can integrate cardiac electrophysiology and pathological alterations is required.


Assuntos
Doenças Cardiovasculares , Doença de Parkinson , Sinucleinopatias , Humanos , Doenças Cardiovasculares/etiologia , Doença de Parkinson/complicações , Coração , Eletrocardiografia
2.
J Cell Sci ; 132(10)2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31028179

RESUMO

Mutations in the cardiac ryanodine receptor Ca2+ release channel (RyR2) can cause deadly ventricular arrhythmias and atrial fibrillation (AF). The RyR2-P2328S mutation produces catecholaminergic polymorphic ventricular tachycardia (CPVT) and AF in hearts from homozygous RyR2P2328S/P2328S (denoted RyR2S/S) mice. We have now examined P2328S RyR2 channels from RyR2S/S hearts. The activity of wild-type (WT) and P2328S RyR2 channels was similar at a cytoplasmic [Ca2+] of 1 mM, but P2328S RyR2 was significantly more active than WT at a cytoplasmic [Ca2+] of 1 µM. This was associated with a >10-fold shift in the half maximal activation concentration (AC50) for Ca2+ activation, from ∼3.5 µM Ca2+ in WT RyR2 to ∼320 nM in P2328S channels and an unexpected >1000-fold shift in the half maximal inhibitory concentration (IC50) for inactivation from ∼50 mM in WT channels to ≤7 µM in P2328S channels, which is into systolic [Ca2+] levels. Unexpectedly, the shift in Ca2+ activation was not associated with changes in sub-conductance activity, S2806 or S2814 phosphorylation or the level of FKBP12 (also known as FKBP1A) bound to the channels. The changes in channel activity seen with the P2328S mutation correlate with altered Ca2+ homeostasis in myocytes from RyR2S/S mice and the CPVT and AF phenotypes.This article has an associated First Person interview with the first author of the paper.


Assuntos
Arritmias Cardíacas/metabolismo , Fibrilação Atrial/metabolismo , Ativação do Canal Iônico/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Arritmias Cardíacas/genética , Fibrilação Atrial/genética , Cálcio/metabolismo , Citoplasma/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Fosforilação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
3.
J Cell Physiol ; 234(4): 3921-3932, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30146680

RESUMO

Peroxisome proliferator-activated receptor-γ coactivator-1 deficient (Pgc-1ß-/- ) murine hearts model the increased, age-dependent, ventricular arrhythmic risks attributed to clinical conditions associated with mitochondrial energetic dysfunction. These were accompanied by compromised action potential (AP) upstroke rates and impaired conduction velocities potentially producing arrhythmic substrate. We tested a hypothesis implicating compromised Na+ current in these electrophysiological phenotypes by applying loose patch-clamp techniques in intact young and aged, wild-type (WT) and Pgc-1ß-/- , ventricular cardiomyocyte preparations for the first time. This allowed conservation of their in vivo extracellular and intracellular conditions. Depolarising steps elicited typical voltage-dependent activating and inactivating inward Na+ currents with peak amplitudes increasing or decreasing with their respective activating or preceding inactivating voltage steps. Two-way analysis of variance associated Pgc-1ß-/- genotype with independent reductions in maximum peak ventricular Na+ currents from -36.63 ± 2.14 (n = 20) and -35.43 ± 1.96 (n = 18; young and aged WT, respectively), to -29.06 ± 1.65 (n = 23) and -27.93 ± 1.63 (n = 20; young and aged Pgc-1ß-/- , respectively) pA/µm2 (p < 0.0001), without independent effects of, or interactions with age. Voltages at half-maximal current V*, and steepness factors k in plots of voltage dependences of both Na+ current activation and inactivation, and time constants for its postrepolarisation recovery from inactivation, remained indistinguishable through all experimental groups. So were the activation and rectification properties of delayed outward (K+ ) currents, demonstrated from tail currents reflecting current recoveries from respective varying or constant voltage steps. These current-voltage properties directly implicate decreases specifically in maximum available Na+ current with unchanged voltage dependences and unaltered K+ current properties, in proarrhythmic reductions in AP conduction velocity in Pgc-1ß-/- ventricles.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/metabolismo , Frequência Cardíaca , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/deficiência , Sódio/metabolismo , Fatores de Transcrição/deficiência , Fatores Etários , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Feminino , Cinética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Potássio/metabolismo , Fatores de Transcrição/genética
5.
Clin Exp Pharmacol Physiol ; 45(2): 174-186, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28949414

RESUMO

Increasing evidence implicates chronic energetic dysfunction in human cardiac arrhythmias. Mitochondrial impairment through Pgc-1ß knockout is known to produce a murine arrhythmic phenotype. However, the cumulative effect of this with advancing age and its electrocardiographic basis have not been previously studied. Young (12-16 weeks) and aged (>52 weeks), wild type (WT) (n = 5 and 8) and Pgc-1ß-/- (n = 9 and 6), mice were anaesthetised and used for electrocardiographic (ECG) recordings. Time intervals separating successive ECG deflections were analysed for differences between groups before and after ß1-adrenergic (intraperitoneal dobutamine 3 mg/kg) challenge. Heart rates before dobutamine challenge were indistinguishable between groups. The Pgc-1ß-/- genotype however displayed compromised nodal function in response to adrenergic challenge. This manifested as an impaired heart rate response suggesting a functional defect at the level of the sino-atrial node, and a negative dromotropic response suggesting an atrioventricular conduction defect. Incidences of the latter were most pronounced in the aged Pgc-1ß-/- mice. Moreover, Pgc-1ß-/- mice displayed electrocardiographic features consistent with the existence of a pro-arrhythmic substrate. Firstly, ventricular activation was prolonged in these mice consistent with slowed action potential conduction and is reported here for the first time. Additionally, Pgc-1ß-/- mice had shorter repolarisation intervals. These were likely attributable to altered K+ conductance properties, ultimately resulting in a shortened QTc interval, which is also known to be associated with increased arrhythmic risk. ECG analysis thus yielded electrophysiological findings bearing on potential arrhythmogenicity in intact Pgc-1ß-/- systems in widespread cardiac regions.


Assuntos
Envelhecimento/fisiologia , Eletrocardiografia , Regulação da Expressão Gênica/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Camundongos , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
6.
Clin Exp Pharmacol Physiol ; 45(3): 278-292, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29027245

RESUMO

Acute RyR2 activation by exchange protein directly activated by cAMP (Epac) reversibly perturbs myocyte Ca2+ homeostasis, slows myocardial action potential conduction, and exerts pro-arrhythmic effects. Loose patch-clamp studies, preserving in vivo extracellular and intracellular conditions, investigated Na+ current in intact cardiomyocytes in murine atrial and ventricular preparations following Epac activation. Depolarising steps to varying test voltages activated typical voltage-dependent Na+ currents. Plots of peak current against depolarisation from resting potential gave pretreatment maximum atrial and ventricular currents of -20.23 ± 1.48 (17) and -29.8 ± 2.4 (10) pA/µm2 (mean ± SEM [n]). Challenge by 8-CPT (1 µmol/L) reduced these currents to -11.21 ± 0.91 (12) (P < .004) and -19.3 ± 1.6 (11) pA/µm2 (P < .04) respectively. Currents following further addition of the RyR2 inhibitor dantrolene (10 µmol/L) (-19.91 ± 2.84 (13) and -26.6 ± 1.7 (17)), and dantrolene whether alone (-19.53 ± 1.97 (8) and -27.6 ± 1.9 (14)) or combined with 8-CPT (-19.93 ± 2.59 (12) and -29.9 ± 2.5(11)), were indistinguishable from pretreatment values (all P >> .05). Assessment of the inactivation that followed by applying subsequent steps to a fixed voltage 100 mV positive to resting potential gave concordant results. Half-maximal inactivation voltages and steepness factors, and time constants for Na+ current recovery from inactivation in double-pulse experiments, were similar through all the pharmacological conditions. Intracellular sharp microelectrode membrane potential recordings in intact Langendorff-perfused preparations demonstrated concordant variations in maximum rates of atrial and ventricular action potential upstroke, (dV/dt)max . We thus demonstrate an acute, reversible, Na+ channel inhibition offering a possible mechanism for previously reported pro-arrhythmic slowing of AP propagation following modifications of Ca2+ homeostasis, complementing earlier findings from chronic alterations in Ca2+ homeostasis in genetically-modified RyR2-P2328S hearts.


Assuntos
AMP Cíclico/análogos & derivados , Dantroleno/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Relaxantes Musculares Centrais/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Potenciais de Ação , Animais , Cálcio/metabolismo , AMP Cíclico/farmacologia , Dantroleno/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canais de Sódio
7.
Int J Mol Sci ; 19(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400228

RESUMO

Increases in the prevalence of obesity, insulin resistance, and metabolic syndrome has led to the increase of atrial fibrillation (AF) cases in the developed world. These AF risk factors are associated with mitochondrial dysfunction, previously modelled using peroxisome proliferator activated receptor-γ (PPARγ) coactivator-1 (Pgc-1)-deficient murine cardiac models. We explored gene and protein expression profiles of selected molecular targets related to electrophysiological function in murine Pgc-1α-/- atria. qPCR analysis surveyed genes related to Na⁺-K⁺-ATPase, K⁺ conductance, hyperpolarisation-activated cyclic nucleotide-gated (Hcn), Na⁺ channels, Ca2+ channels, and indicators for adrenergic and cholinergic receptor modulation. Western blot analysis for molecular targets specific to conduction velocity (Nav1.5 channel and gap junctions) was performed. Transcription profiles revealed downregulation of molecules related to Na⁺-K⁺-ATPase transport, Hcn-dependent pacemaker function, Na⁺ channel-dependent action potential activation and propagation, Ca2+ current generation, calsequestrin-2 dependent Ca2+ homeostasis, and adrenergic α1D dependent protection from hypertrophic change. Nav1.5 channel protein expression but not gap junction expression was reduced in Pgc-1α-/- atria compared to WT. Nav1.5 reduction reflects corresponding reduction in its gene expression profile. These changes, as well as the underlying Pgc-1α-/- alteration, suggest potential pharmacological targets directed towards either upstream PGC-1 signalling mechanisms or downstream ion channel changes.


Assuntos
Fenômenos Eletrofisiológicos/genética , Perfilação da Expressão Gênica , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Fatores de Transcrição/deficiência , Potenciais de Ação , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Sistema de Condução Cardíaco/fisiopatologia , Homeostase , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Transcrição/metabolismo
8.
Pflugers Arch ; 469(12): 1579-1590, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28821956

RESUMO

A range of chronic clinical conditions accompany cardiomyocyte energetic dysfunction and constitute independent risk factors for cardiac arrhythmia. We investigated pro-arrhythmic and arrhythmic phenotypes in energetically deficient C57BL mice with genetic ablation of the mitochondrial promoter peroxisome proliferator-activated receptor-γ coactivator-1ß (Pgc-1ß), a known model of ventricular arrhythmia. Pro-arrhythmic and cellular action potential (AP) characteristics were compared in intact Langendorff-perfused hearts from young (12-16 week) and aged (> 52 week), wild-type (WT) and Pgc-1ß -/- mice. Simultaneous electrocardiographic and intracellular microelectrode recordings were made through successive trains of 100 regular stimuli at progressively incremented heart rates. Aged Pgc-1ß -/- hearts displayed an increased incidence of arrhythmia compared to other groups. Young and aged Pgc-1ß -/- hearts showed higher incidences of alternans in both AP activation (maximum AP upshoot velocity (dV/dt)max and latency), recovery (action potential duration (APD90) and resting membrane potential (RMP) characteristics compared to WT hearts. This was particularly apparent at lower pacing frequencies. These findings accompanied reduced (dV/dt)max and increased AP latency values in the Pgc-1ß -/- hearts. APs observed prior to termination of the protocol showed lower (dV/dt)max and longer AP latencies, but indistinguishable APD90 and RMPs in arrhythmic compared to those in non-arrhythmic hearts. APD restitution analysis showed that Pgc-1ß -/- and WT hearts showed similar limiting gradients. However, Pgc-1ß -/- hearts had shortened plateau AP wavelengths, particularly in aged Pgc-1ß -/- hearts. Pgc-1ß -/- hearts therefore show pro-arrhythmic instabilities attributable to altered AP conduction and activation rather than recovery characteristics.


Assuntos
Envelhecimento/metabolismo , Arritmias Cardíacas/metabolismo , Ventrículos do Coração/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/deficiência , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/fisiopatologia , Estimulação Cardíaca Artificial , Ventrículos do Coração/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
9.
Exp Physiol ; 102(12): 1619-1634, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28960529

RESUMO

NEW FINDINGS: What is the central question of this study? Can we experimentally replicate atrial pro-arrhythmic phenotypes associated with important chronic clinical conditions, including physical inactivity, obesity, diabetes mellitus and metabolic syndrome, compromising mitochondrial function, and clarify their electrophysiological basis? What is the main finding and its importance? Electrocardiographic and intracellular cardiomyocyte recording at progressively incremented pacing rates demonstrated age-dependent atrial arrhythmic phenotypes in Langendorff-perfused murine Pgc1ß-/- hearts for the first time. We attributed these to compromised action potential conduction and excitation wavefronts, whilst excluding alterations in recovery properties or temporal electrophysiological instabilities, clarifying these pro-arrhythmic changes in chronic metabolic disease. Atrial arrhythmias, most commonly manifesting as atrial fibrillation, represent a major clinical problem. The incidence of atrial fibrillation increases with both age and conditions associated with energetic dysfunction. Atrial arrhythmic phenotypes were compared in young (12-16 week) and aged (>52 week) wild-type (WT) and peroxisome proliferative activated receptor, gamma, coactivator 1 beta (Ppargc1b)-deficient (Pgc1ß-/- ) Langendorff-perfused hearts, previously used to model mitochondrial energetic disorder. Electrophysiological explorations were performed using simultaneous whole-heart ECG and intracellular atrial action potential (AP) recordings. Two stimulation protocols were used: an S1S2 protocol, which imposed extrasystolic stimuli at successively decremented intervals following regular pulse trains; and a regular pacing protocol at successively incremented frequencies. Aged Pgc1ß-/- hearts showed greater atrial arrhythmogenicity, presenting as atrial tachycardia and ectopic activity. Maximal rates of AP depolarization (dV/dtmax ) were reduced in Pgc1ß-/- hearts. Action potential latencies were increased by the Pgc1ß-/- genotype, with an added interactive effect of age. In contrast, AP durations to 90% recovery (APD90 ) were shorter in Pgc1ß-/- hearts despite similar atrial effective recovery periods amongst the different groups. These findings accompanied paradoxical decreases in the incidence and duration of alternans in the aged and Pgc1ß-/- hearts. Limiting slopes of restitution curves of APD90 against diastolic interval were correspondingly reduced interactively by Pgc1ß-/- genotype and age. In contrast, reduced AP wavelengths were associated with Pgc1ß-/- genotype, both independently and interacting with age, through the basic cycle lengths explored, with the aged Pgc1ß-/- hearts showing the shortest wavelengths. These findings thus implicate AP wavelength in possible mechanisms for the atrial arrhythmic changes reported here.


Assuntos
Arritmias Cardíacas/metabolismo , Estimulação Cardíaca Artificial , Átrios do Coração/metabolismo , Frequência Cardíaca , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/deficiência , Potenciais de Ação , Fatores Etários , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Testes Genéticos , Átrios do Coração/fisiopatologia , Frequência Cardíaca/genética , Preparação de Coração Isolado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fenótipo , Fatores de Tempo
10.
Clin Exp Pharmacol Physiol ; 44 Suppl 1: 38-45, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28024120

RESUMO

Ageing is associated with increased prevalences of both atrial and ventricular arrhythmias, reflecting disruption of the normal sequence of ion channel activation and inactivation generating the propagated cardiac action potential. Experimental models with specific ion channel genetic modifications have helped clarify the interacting functional roles of ion channels and how their dysregulation contributes to arrhythmogenic processes at the cellular and systems level. They have also investigated interactions between these ion channel abnormalities and age-related processes in producing arrhythmic tendency. Previous reviews have explored the relationships between age and loss-of-function Nav 1.5 mutations in producing arrhythmogenicity. The present review now explores complementary relationships arising from gain-of-function Nav 1.5 mutations associated with long QT3 (LQTS3). LQTS3 patients show increased risks of life-threatening ventricular arrhythmias, particularly after 40 years of age, consistent with such interactions between the ion channel abnormailities and ageing. In turn clinical evidence suggests that ageing is accompanied by structural, particularly fibrotic, as well as electrophysiological change. These abnormalities may result from biochemical changes producing low-grade inflammation resulting from increased production of reactive oxygen species and superoxide. Experimental studies offer further insights into the underlying mechanisms underlying these phenotypes. Thus, studies in genetically modified murine models for LQTS implicated action potential recovery processes in arrhythmogenesis resulting from functional ion channel abnormalities. In addition, ageing wild type (WT) murine models demonstrated both ion channel alterations and fibrotic changes with ageing. Murine models then suggested evidence for interactions between ageing and ion channel mutations and provided insights into potential arrhythmic mechanisms inviting future exploration.


Assuntos
Potenciais de Ação/genética , Envelhecimento/genética , Frequência Cardíaca/genética , Síndrome do QT Longo/genética , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Fatores Etários , Envelhecimento/metabolismo , Animais , Predisposição Genética para Doença , Humanos , Incidência , Cinética , Síndrome do QT Longo/epidemiologia , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Fenótipo , Fatores de Risco
11.
Pflugers Arch ; 468(4): 655-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26545784

RESUMO

Catecholaminergic polymorphic ventricular tachycardia (CPVT) predisposes to ventricular arrhythmia due to altered Ca(2+) homeostasis and can arise from ryanodine receptor (RyR2) mutations including RyR2-P2328S. Previous reports established that homozygotic murine RyR2-P2328S (RyR2 (S/S)) hearts show an atrial arrhythmic phenotype associated with reduced action potential (AP) conduction velocity and sodium channel (Nav1.5) expression. We now relate ventricular arrhythmogenicity and slowed AP conduction in RyR2 (S/S) hearts to connexin-43 (Cx43) and Nav1.5 expression and Na(+) current (I Na). Stimulation protocols applying extrasystolic S2 stimulation following 8 Hz S1 pacing at progressively decremented S1S2 intervals confirmed an arrhythmic tendency despite unchanged ventricular effective refractory periods (VERPs) in Langendorff-perfused RyR2 (S/S) hearts. Dynamic pacing imposing S1 stimuli then demonstrated that progressive reductions of basic cycle lengths (BCLs) produced greater reductions in conduction velocity at equivalent BCLs and diastolic intervals in RyR2 (S/S) than WT, but comparable changes in AP durations (APD90) and their alternans. Western blot analyses demonstrated that Cx43 protein expression in whole ventricles was similar, but Nav1.5 expression in both whole tissue and membrane fractions were significantly reduced in RyR2 (S/S) compared to wild-type (WT). Loose patch-clamp studies similarly demonstrated reduced I Na in RyR2 (S/S) ventricles. We thus attribute arrhythmogenesis in RyR2 (S/S) ventricles resulting from arrhythmic substrate produced by reduced conduction velocity to downregulated Nav1.5 reducing I Na, despite normal determinants of repolarization and passive conduction. The measured changes were quantitatively compatible with earlier predictions of linear relationships between conduction velocity and the peak I Na of the AP but nonlinear relationships between peak I Na and maximum Na(+) permeability.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/metabolismo , Ventrículos do Coração/metabolismo , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Função Ventricular , Animais , Conexina 43/genética , Conexina 43/metabolismo , Regulação para Baixo , Feminino , Ventrículos do Coração/fisiopatologia , Masculino , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
12.
Ann N Y Acad Sci ; 1535(1): 62-75, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38602714

RESUMO

Hippocampal pyramidal neuronal activity has been previously studied using conventional patch clamp in isolated cells and brain slices. We here introduce the loose patch clamping study of voltage-activated currents from in situ pyramidal neurons in murine cornus ammonis 1 hippocampal coronal slices. Depolarizing pulses of 15-ms duration elicited early transient inward, followed by transient and prolonged outward currents in the readily identifiable junctional region between the stratum pyramidalis (SP) and oriens (SO) containing pyramidal cell somas and initial segments. These resembled pyramidal cell currents previously recorded using conventional patch clamp. Shortening the depolarizing pulses to >1-2 ms continued to evoke transient currents; hyperpolarizing pulses to varying voltages evoked decays whose time constants could be shortened to <1 ms, clarifying the speed of clamping in this experimental system. The inward and outward currents had distinct pharmacological characteristics and voltage-dependent inactivation and recovery from inactivation. Comparative recordings from the SP, known to contain pyramidal cell somas, demonstrated similar current properties. Recordings from the SO and stratum radiatum demonstrated smaller inward and outward current magnitudes and reduced transient outward currents, consistent with previous conventional patch clamp results from their different interneuron types. The loose patch clamp method is thus useful for in situ studies of neurons in hippocampal brain slices.


Assuntos
Técnicas de Patch-Clamp , Células Piramidais , Animais , Técnicas de Patch-Clamp/métodos , Camundongos , Células Piramidais/fisiologia , Potenciais da Membrana/fisiologia , Hipocampo/fisiologia , Hipocampo/citologia , Neurônios/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Camundongos Endogâmicos C57BL , Masculino
13.
Front Physiol ; 15: 1359560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720787

RESUMO

Introduction: The loose-patch clamp technique was first developed and used in native amphibian skeletal muscle (SkM), offering useful features complementing conventional sharp micro-electrode, gap, or conventional patch voltage clamping. It demonstrated the feedback effects of pharmacological modification of ryanodine receptor (RyR)-mediated Ca2+ release on the Na+ channel (Nav1.4) currents, initiating excitation-contraction coupling in native murine SkM. The effects of the further RyR and Ca2+-ATPase (SERCA) antagonists, dantrolene and cyclopiazonic acid (CPA), additionally implicated background tubular-sarcoplasmic Ca2+ domains in these actions. Materials and methods: We extend the loose-patch clamp approach to ion current measurements in murine hippocampal brain slice cornu ammonis-1 (CA1) pyramidal neurons. We explored the effects on Na+ currents of pharmacologically manipulating RyR and SERCA-mediated intracellular store Ca2+ release and reuptake. We adopted protocols previously applied to native skeletal muscle. These demonstrated Ca2+-mediated feedback effects on the Na+ channel function. Results: Experiments applying depolarizing 15 ms duration loose-patch clamp steps to test voltages ranging from -40 to 120 mV positive to the resting membrane potential demonstrated that 0.5 mM caffeine decreased inward current amplitudes, agreeing with the previous SkM findings. It also decreased transient but not prolonged outward current amplitudes. However, 2 mM caffeine affected neither inward nor transient outward but increased prolonged outward currents, in contrast to its increasing inward currents in SkM. Furthermore, similarly and in contrast to previous SkM findings, both dantrolene (10 µM) and CPA (1 µM) pre-administration left both inward and outward currents unchanged. Nevertheless, dantrolene pretreatment still abrogated the effects of subsequent 0.5- and 2-mM caffeine challenges on both inward and outward currents. Finally, CPA abrogated the effects of 0.5 mM caffeine on both inward and outward currents, but with 2 mM caffeine, inward and transient outward currents were unchanged, but sustained outward currents increased. Conclusion: We, thus, extend loose-patch clamping to establish pharmacological properties of murine CA1 pyramidal neurons and their similarities and contrasts with SkM. Here, evoked though not background Ca2+-store release influenced Nav and Kv excitation, consistent with smaller contributions of background store Ca2+ release to resting [Ca2+]. This potential non-canonical mechanism could modulate neuronal membrane excitability or cellular firing rates.

14.
Clin Res Cardiol ; 111(9): 971-993, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34748053

RESUMO

BACKGROUND: In the wake of the controversy surrounding the SYMPLICITY HTN-3 trial and data from subsequent trials, this review aims to perform an updated and more comprehensive review of the impact of renal sympathetic denervation on cardiac arrhythmias. METHODS AND RESULTS: A systematic search was performed using the Medline, Scopus and Embase databases using the terms "Renal Denervation" AND "Arrhythmias or Atrial or Ventricular", limited to Human and English language studies within the last 10 years. This search yielded 19 relevant studies (n = 6 randomised controlled trials, n = 13 non-randomised cohort studies) which comprised 783 patients. The studies show RSD is a safe procedure, not associated with increases in complications or mortality post-procedure. Importantly, there is no evidence RSD is associated with a deterioration in renal function, even in patients with chronic kidney disease. RSD with or without adjunctive pulmonary vein isolation (PVI) is associated with improvements in freedom from atrial fibrillation (AF), premature atrial complexes (PACs), ventricular arrhythmias and other echocardiographic parameters. Significant reductions in ambulatory and office blood pressure were also observed in the majority of studies. CONCLUSION: This review provides evidence based on original research that 'second generation' RSD is safe and is associated with reductions in short-term blood pressure and AF burden. However, the authors cannot draw firm conclusions with regards to less prominent arrhythmia subtypes due to the paucity of evidence available. Large multi-centre RCTs investigating the role of RSD are necessary to comprehensively assess the efficacy of the procedure treating various arrhythmias.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Insuficiência Renal Crônica , Fibrilação Atrial/cirurgia , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Humanos , Rim/irrigação sanguínea , Rim/fisiologia , Rim/cirurgia , Veias Pulmonares/cirurgia , Simpatectomia/efeitos adversos , Simpatectomia/métodos , Resultado do Tratamento
15.
Mol Genet Metab Rep ; 27: 100753, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33898262

RESUMO

Mitochondrial dysfunction underlying metabolic disorders such as obesity and diabetes mellitus is strongly associated with cardiac arrhythmias. Murine Pgc-1α-/- hearts replicate disrupted mitochondrial function and model the associated pro-arrhythmic electrophysiological abnormalities. Quantitative PCR, western blotting and histological analysis were used to investigate the molecular basis of the electrophysiological changes associated with mitochondrial dysfunction. qPCR analysis implicated downregulation of genes related to Na+-K+ ATPase activity (Atp1b1), surface Ca2+ entry (Cacna1c), action potential repolarisation (Kcnn1), autonomic function (Adra1d, Adcy4, Pde4d, Prkar2a), and morphological properties (Myh6, Tbx3) in murine Pgc-1α-/- ventricles. Western blotting revealed reduced NaV1.5 but normal Cx43 expression. Histological analysis revealed increased tissue fibrosis in the Pgc-1α-/- ventricles. These present findings identify altered transcription amongst a strategically selected set of genes established as encoding proteins involved in cardiac electrophysiological activation and therefore potentially involved in alterations in ventricular activation and Ca2+ homeostasis in arrhythmic substrate associated with Pgc-1α deficiency. They complement and complete previous studies examining such expression characteristics in the atria and ventricles of Pgc-1 deficient murine hearts.

16.
Rev Bras Ortop (Sao Paulo) ; 54(6): 736-738, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31875075

RESUMO

Intertrochanteric fractures of the femur in ankylosed hips are extremely rare. The aims of the operative management for elderly patients with intertrochanteric fractures are to prevent general complications, to maintain mobility, and to relieve pain. The optimal management to achieve these goals is not clear. The authors present a case of a 74-year-old man with an intertrochanteric fracture of the femur in an ankylosed hip. The fracture was managed surgically with dynamic hip screws and cannulated screws. Two years after the surgery, good union was observed at the fracture, and the patient was ambulating independently.

17.
Front Physiol ; 10: 497, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068841

RESUMO

BACKGROUND: Deficiencies in the transcriptional co-activator, peroxisome proliferative activated receptor, gamma, coactivator-1ß are implicated in deficient mitochondrial function. The latter accompanies clinical conditions including aging, physical inactivity, obesity, and diabetes. Recent electrophysiological studies reported that Pgc-1ß-/- mice recapitulate clinical age-dependent atrial pro-arrhythmic phenotypes. They implicated impaired chronotropic responses to adrenergic challenge, compromised action potential (AP) generation and conduction despite normal AP recovery timecourses and background resting potentials, altered intracellular Ca2+ homeostasis, and fibrotic change in the observed arrhythmogenicity. OBJECTIVE: We explored the extent to which these age-dependent physiological changes correlated with alterations in gene transcription in murine Pgc-1ß-/- atria. METHODS AND RESULTS: RNA isolated from murine atrial tissue samples from young (12-16 weeks) and aged (>52 weeks of age), wild type (WT) and Pgc-1ß-/- mice were studied by pre-probed quantitative PCR array cards. We examined genes encoding sixty ion channels and other strategic atrial electrophysiological proteins. Pgc-1ß-/- genotype independently reduced gene transcription underlying Na+-K+-ATPase, sarcoplasmic reticular Ca2+-ATPase, background K+ channel and cholinergic receptor function. Age independently decreased Na+-K+-ATPase and fibrotic markers. Both factors interacted to alter Hcn4 channel activity underlying atrial automaticity. However, neither factor, whether independently or interactively, affected transcription of cardiac Na+, voltage-dependent K+ channels, surface or intracellular Ca2+ channels. Nor were gap junction channels, ß-adrenergic receptors or transforming growth factor-ß affected. CONCLUSION: These findings limit the possible roles of gene transcriptional changes in previously reported age-dependent pro-arrhythmic electrophysiologial changes observed in Pgc-1ß-/- atria to an altered Ca2+-ATPase (Atp2a2) expression. This directly parallels previously reported arrhythmic mechanism associated with p21-activated kinase type 1 deficiency. This could add to contributions from the direct physiological outcomes of mitochondrial dysfunction, whether through reactive oxygen species (ROS) production or altered Ca2+ homeostasis.

18.
Sci Rep ; 9(1): 1927, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760734

RESUMO

We investigated effects of pharmacological triggering of exchange protein directly activated by cyclic-3',5'-adenosine monophosphate (Epac) on Nav1.4 currents from intact murine (C67BL6) skeletal muscle fibres for the first time. This employed a loose patch clamp technique which examined ionic currents in response to superimposed 10-ms V1 steps to varying degrees of depolarisation, followed by V2 steps to a fixed, +100 mV depolarisation relative to resting membrane potential following 40 mV hyperpolarising prepulses of 50 ms duration. The activation and inactivation properties of the resulting Na+ membrane current densities revealed reduced maximum currents and steepnesses in their voltage dependences after addition of the Epac activator 8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphate (1 µM) to the bathing Krebs-Henseleit solutions. Contrastingly, voltages at half-maximal current and timecourses of currents obtained in response to the V1 depolarising steps were unchanged. These effects were abolished by further addition of the RyR-inhibitor dantrolene (10 µM). In contrast, challenge by dantrolene alone left both currents and their parameters intact. These effects of Epac activation in inhibiting skeletal muscle, Nav1.4, currents, complement similar effects previously reported in the homologous Nav1.5 in murine cardiomyocytes. They are discussed in terms of a hypothesis implicating Epac actions in increasing RyR-mediated SR Ca2+ release resulting in a Ca2+-mediated inhibition of Nav1.4. The latter effect may form the basis for Ca2+-dependent Na+ channel dysregulation in SCN4A channelopathies associated with cold- and K+-aggravated myotonias.


Assuntos
AMP Cíclico/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Sódio/metabolismo , Animais , Transporte de Íons/efeitos dos fármacos , Camundongos , Fibras Musculares Esqueléticas/citologia , Técnicas de Patch-Clamp
19.
Biosci Rep ; 39(12)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31778152

RESUMO

INTRODUCTION: Ageing and chronic metabolic disorders are associated with mitochondrial dysfunction and cardiac pro-arrhythmic phenotypes which were recently attributed to slowed atrial and ventricular action potential (AP) conduction in peroxisome proliferator-activated receptor γ co-activator deficient (Pgc-1ß-/-) mice. METHODS: We compared expression levels of voltage-gated Na+ channel (NaV1.5) and gap junction channels, Connexins 40 and 43 (Cx40 and Cx43) in the hearts of young and old, and wild-type (WT) and Pgc-1ß-/- mice. This employed Western blotting (WB) for NaV1.5, Cx40 and Cx43 in atrial/ventricular tissue lysates, and immunofluorescence (IF) from Cx43 was explored in tissue sections. Results were analysed using two-way analysis of variance (ANOVA) for independent/interacting effects of age and genotype. RESULTS: In atria, increased age and Pgc-1ß-/- genotype each independently decreased both Cx40 and Cx43 expression without interacting effects. In IF experiments, both age and Pgc-1ß deletion independently reduced Cx43 expression. In ventricles, age and genotype exerted interacting effects in WB studies of NaV1.5 expression. Young Pgc-1ß-/- then showed greater NaV1.5 expression than young WT ventricles. However, neither age nor Pgc-1ß deletion affected Cx43 expression, independently or through interacting effects in both WB and IF studies. CONCLUSION: Similar pro-arrhythmic atrial/ventricular phenotypes arise in aged/Pgc-1ß-/- from differing contributions of altered protein expression and functional effects that may arise from multiple acute mechanisms.


Assuntos
Envelhecimento/genética , Arritmias Cardíacas/genética , Mitocôndrias/genética , PPAR gama/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Conexina 43/genética , Conexinas/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Coração/fisiopatologia , Frequência Cardíaca , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Camundongos , Mitocôndrias/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Fenótipo , Proteína alfa-5 de Junções Comunicantes
20.
Biosci Rep ; 39(4)2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30914453

RESUMO

Mice deficient in mitochondrial promoter peroxisome proliferator activated receptor-γ co-activator-1ß (Pgc-1ß-/- ) is a valuable model for metabolic diseases and has been found to present with several pathologies including ventricular arrhythmia. In the present study, our aim was to shed light on the molecular mechanisms behind the observed arrhythmic substrate by studying how the expression of selected genes critical for cardiac function differs in wild-type (WT) compared with Pgc-1ß knockout mice and young compared with aged mice. We found that a clear majority of genes are down-regulated in the Pgc-1ß-/- ventricular tissue compared with the WT. Although most individual genes are not significantly differentially expressed, a pattern is apparent when the genes are grouped according to their functional properties. Genes encoding proteins relating to ATPase activity, potassium ion channels relating to repolarisation and resting membrane potential, and genes encoding proteins in the cAMP pathway are found to be significantly down-regulated in the Pgc-1ß deficient mice. On the contrary, the pacemaker channel genes Hcn3 and Hcn4 are up-regulated in subsets of the Pgc-1ß deficient tissue. Furthermore, we found that with age, especially in the Pgc-1ß-/- genotype, most genes are up-regulated including genes relating to the resting membrane potential, calcium homeostasis, the cAMP pathway, and most of the tested adrenoceptors. In conclusion, we here demonstrate how a complex pattern of many modest changes at gene level may explain major functional differences of the action potential related to ageing and mitochondrial dysfunction.


Assuntos
Envelhecimento , Ventrículos do Coração/metabolismo , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Transcriptoma , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Deleção de Genes , Regulação da Expressão Gênica , Ventrículos do Coração/fisiopatologia , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Função Ventricular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa