Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Semin Cancer Biol ; 86(Pt 2): 769-783, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35278636

RESUMO

Tumor heterogeneity is a hallmark of cancer and one of the primary causes of resistance to therapies. Triple-negative breast cancer (TNBC), which accounts for 15-20% of all breast cancers and is the most aggressive subtype, is very diverse, connected to metastatic potential and response to therapy. It is a very diverse disease at the molecular, pathologic, and clinical levels. TNBC is substantially more likely to recur and has a worse overall survival rate following diagnosis than other breast cancer subtypes. Chemokines, low molecular weight proteins that stimulate chemotaxis, have been shown to control the cues responsible for TNBC heterogeneity. In this review, we have focused on tumor heterogeneity and the role of chemokines in modulating tumor heterogeneity, since this is the most critical issue in treating TNBC. Additionally, we examined numerous cues mediated by chemokine networks that contribute to the heterogeneity of TNBC. Recent developments in our knowledge of the chemokine networks that regulate TNBC heterogeneity may pave the way for developing effective therapeutic modalities for effective treatment of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Recidiva Local de Neoplasia , Quimiocinas/uso terapêutico
2.
BMC Genomics ; 24(1): 214, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098463

RESUMO

Salmonella enterica serovar typhimurium is the cause of significant morbidity and mortality worldwide that causes economic losses to poultry and is able to cause infection in humans. Indigenous chicken breeds are a potential source of animal protein and have the added advantage of being disease resistant. An indigenous chicken, Kashmir favorella and commercial broiler were selected for understanding the mechanism of disease resistance. Following infection in Kashmir favorella, three differentially expressed genes Nuclear Factor Kappa B (NF-κB1), Forkhead Box Protein O3 (FOXO3) and Paired box 5 (Pax5) were identified. FOXO3, a transcriptional activator, is the potential marker of host resistance in Salmonella infection. NF-κB1 is an inducible transcription factor which lays the foundation for studying gene network of the innate immune response of Salmonella infection in chicken. Pax5 is essential for differentiation of pre-B cells into mature B cell. The real time PCR analysis showed that in response to Salmonella Typhimurium infection a remarkable increase of NF-κB1 (P˂0.01), FOXO3 (P˂0.01) gene expression in liver and Pax5 (P˂0.01) gene expression in spleen of Kashmir favorella was observed. The protein-protein interaction (PPI) and protein-TF interaction network by STRINGDB analysis suggests that FOXO3 is a hub gene in the network and is closely related to Salmonella infection along with NF-κB1. All the three differentially expressed genes (NF-κB1, FOXO3 and PaX5) showed their influence on 12 interacting proteins and 16 TFs, where cyclic adenosine monophosphate Response Element Binding protein (CREBBP), erythroblast transformation-specific (ETSI), Tumour-protein 53(TP53I), IKKBK, lymphoid enhancer-binding factor-1 (LEF1), and interferon regulatory factor-4 (IRF4) play role in immune responses. This study shall pave the way for newer strategies for treatment and prevention of Salmonella infection and may help in increasing the innate disease resistance.


Assuntos
Galinhas , Salmonelose Animal , Humanos , Animais , Galinhas/genética , Salmonella typhimurium/genética , Fatores de Transcrição/genética , Resistência à Doença , Salmonelose Animal/genética , Perfilação da Expressão Gênica
3.
BMC Genomics ; 24(1): 616, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845620

RESUMO

BACKGROUND: Elucidating genome-wide structural variants including copy number variations (CNVs) have gained increased significance in recent times owing to their contribution to genetic diversity and association with important pathophysiological states. The present study aimed to elucidate the high-resolution CNV map of six different global buffalo breeds using whole genome resequencing data at two coverages (10X and 30X). Post-quality control, the sequence reads were aligned to the latest draft release of the Bubaline genome. The genome-wide CNVs were elucidated using a read-depth approach in CNVnator with different bin sizes. Adjacent CNVs were concatenated into copy number variation regions (CNVRs) in different breeds and their genomic coverage was elucidated. RESULTS: Overall, the average size of CNVR was lower at 30X coverage, providing finer details. Most of the CNVRs were either deletion or duplication type while the occurrence of mixed events was lesser in number on a comparative basis in all breeds. The average CNVR size was lower at 30X coverage (0.201 Mb) as compared to 10X (0.013 Mb) with the finest variants in Banni buffaloes. The maximum number of CNVs was observed in Murrah (2627) and Pandharpuri (25,688) at 10X and 30X coverages, respectively. Whereas the minimum number of CNVs were scored in Surti at both coverages (2092 and 17,373). On the other hand, the highest and lowest number of CNVRs were scored in Jaffarabadi (833 and 10,179 events) and Surti (783 and 7553 events) at both coverages. Deletion events overnumbered duplications in all breeds at both coverages. Gene profiling of common overlapped genes and longest CNVRs provided important insights into the evolutionary history of these breeds and indicate the genomic regions under selection in respective breeds. CONCLUSION: The present study is the first of its kind to elucidate the high-resolution CNV map in major buffalo populations using a read-depth approach on whole genome resequencing data. The results revealed important insights into the divergence of major global buffalo breeds along the evolutionary timescale.


Assuntos
Búfalos , Variações do Número de Cópias de DNA , Animais , Búfalos/genética , Genoma , Análise de Sequência de DNA , Genômica/métodos
4.
Microb Pathog ; 182: 106234, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37442216

RESUMO

Growing antimicrobial resistance (AMR) is a threat to human and animal populations citing the limited available options. Alternative antimicrobial options or functional enhancement of currently available antimicrobials remains only options. One of the potential options seems stem cells especially the mesenchymal stem cells (MSCs) that show antimicrobial properties. These cells additionally have pro-healing effects that may plausibly improve healing outcomes. MSCs antimicrobial actions are mediated either through direct cell-cell contact or their secretome that enhances innate immune mediated antimicrobial activities. These cells synergistically enhance efficacy of currently available antimicrobials especially against the biofilms. Reciprocal action from antimicrobials on the MSCs functionality remains poorly understood. Currently, the main limitation with MSCs based therapy is their limited efficacy. This demands further understanding and can be enhanced through biotechnological interventions. One of the interventional options is the 'priming' to enhance MSCs resistance and specific expression potential. The available literature shows potential antimicrobial actions of MSCs both ex vivo as well as in vivo. The studies on veterinary species are very promising although limited by number and extensiveness in details for their utility as standard therapeutic agents. The current review aims to discuss the role of animals in AMR and the potential antimicrobial actions of MSCs in veterinary medicine. The review also discusses the limitations in their utilization as standard therapeutics.


Assuntos
Infecções Bacterianas , Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Mesenquimais , Animais , Animais Domésticos , Infecções Bacterianas/terapia , Infecções Bacterianas/veterinária , Terapia Baseada em Transplante de Células e Tecidos/veterinária , Resistência a Medicamentos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Viroses/terapia , Viroses/veterinária , Secretoma , Peptídeos Antimicrobianos/metabolismo
5.
Cell Commun Signal ; 21(1): 3, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604713

RESUMO

SCARB1 belongs to class B of Scavenger receptors (SRs) that are known to be involved in binding and endocytosis of various pathogens. SRs have emerging role in regulating innate immunity and host-pathogen interactions by acting in co-ordination with Toll-like receptors.Query Little is known about the function of SCARB1 in milk-derived mammary epithelial cells (MECs). This study reports the role of SCARB1 in infection and its potential association in TLR4 signaling on bacterial challenge in Goat mammary epithelial cells (GMECs). The novelty in the establishment of MEC culture lies in the method that aims to enhance the viability of the cells with intact characteristics upto a higher passage number. We represent MEC culture to be used as a potential infection model for deeper understanding of animal physiology especially around the mammary gland. On E.coli challenge the expression of SCARB1 was significant in induced GMECs at 6 h. Endoribonuclease-esiRNA based silencing of SCARB1 affects the expression of TLR4 and its pathways i.e. MyD88 and TRIF pathways on infection. Knockdown also affected the endocytosis of E.coli in GMECs demonstrating that E.coli uses SCARB1 function to gain entry in cells. Furthermore, we predict 3 unique protein structures of uncharacterized SCARB1 (Capra hircus) protein. Overall, we highlight SCARB1 as a main participant in host defence and its function in antibacterial advances to check mammary gland infections. Video Abstract.


Assuntos
Células Epiteliais , Infecções por Escherichia coli , Glândulas Mamárias Animais , Receptores Depuradores , Receptor 4 Toll-Like , Animais , Endocitose , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Escherichia coli , Receptores Depuradores/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Cabras , Glândulas Mamárias Animais/microbiologia , Infecções por Escherichia coli/veterinária
6.
Genomics ; 114(5): 110475, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36064074

RESUMO

Salmonella, one of the major infectious diseases in poultry, causes considerable economic losses in terms of mortality and morbidity, especially in countries that lack effective vaccination programs. Besides being resistant to diseases, indigenous chicken breeds are also a potential source of animal protein in developing countries. For understanding the disease resistance, an indigenous chicken line Kashmir faverolla, and commercial broiler were selected. RNA-seq was performed after challenging the chicken with Salmonella Typhimurium. Comparative differential expression results showed that following infection, a total of 3153 genes and 1787 genes were differentially expressed in the liver and spleen, respectively. The genes that were differentially expressed included interleukins, cytokines, NOS2, Avß-defensins, toll-like receptors, and other immune-related gene families. Most of the genes and signaling pathways involved in the innate and adaptive immune responses against bacterial infection were significantly enriched in the Kashmir faverolla. Pathway analysis revealed that most of the enriched pathways were MAPK signaling pathway, NOD-like receptor signaling pathway, TLR signaling pathway, PPAR signaling pathway, endocytosis, etc. Surprisingly some immune-related genes like TLRs were upregulated in the susceptible chicken breed. On postmortem examination, the resistant birds showed small lesions in the liver compared to large necrotic lesions in susceptible birds. The pathological manifestations and RNA sequencing results suggest a balancing link between resistance and infection tolerance in Kashmir faverolla. Here we also developed an online Poultry Infection Database (https://skuastk.org/pif/index.html), the first publicly available gene expression resource for disease resistance in chickens. The available database not only shows the data for gene expression in chicken tissues but also provides quick search, visualization and download capacity.


Assuntos
Galinhas , Doenças das Aves Domésticas , Animais , Galinhas/genética , Citocinas/genética , Defensinas/genética , Resistência à Doença/genética , Expressão Gênica , Proteínas NLR/genética , Receptores Ativados por Proliferador de Peroxissomo/genética , Aves Domésticas/genética , Doenças das Aves Domésticas/genética , RNA-Seq , Salmonella/genética , Análise de Sequência de RNA , Receptores Toll-Like/genética
7.
BMC Genomics ; 23(1): 176, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246027

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are now proven as essential regulatory elements, playing diverse roles in many biological processes including mammary gland development. However, little is known about their roles in the bovine lactation process. RESULTS: To identify and characterize the roles of lncRNAs in bovine lactation, high throughput RNA sequencing data from Jersey (high milk yield producer), and Kashmiri cattle (low milk yield producer) were utilized. Transcriptome data from three Kashmiri and three Jersey cattle throughout their lactation stages were utilized for differential expression analysis. At each stage (early, mid and late) three samples were taken from each breed. A total of 45 differentially expressed lncRNAs were identified between the three stages of lactation. The differentially expressed lncRNAs were found co-expressed with genes involved in the milk synthesis processes such as GPAM, LPL, and ABCG2 indicating their potential regulatory effects on milk quality genes. KEGG pathways analysis of potential cis and trans target genes of differentially expressed lncRNAs indicated that 27 and 48 pathways were significantly enriched between the three stages of lactation in Kashmiri and Jersey respectively, including mTOR signaling, PI3K-Akt signaling, and RAP1 signaling pathways. These pathways are known to play key roles in lactation biology and mammary gland development. CONCLUSIONS: Expression profiles of lncRNAs across different lactation stages in Jersey and Kashmiri cattle provide a valuable resource for the study of the regulatory mechanisms involved in the lactation process as well as facilitate understanding of the role of lncRNAs in bovine lactation biology.


Assuntos
Leite , RNA Longo não Codificante , Animais , Bovinos/genética , Células Epiteliais/metabolismo , Feminino , Lactação/genética , Lactação/metabolismo , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcriptoma
8.
Microb Pathog ; 162: 105367, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34963641

RESUMO

Mastitis or inflammation of the mammary gland is a highly economic and deadly alarming disease for the dairy sector as well as policymakers caused by microbial infection. Transcriptomic and proteomic approaches have been widely employed to identify the underlying molecular mechanisms of bacterial infections in the mammary gland. Numerous differentially expressed mRNAs, miRNAs, and proteins together with their associated signaling pathways have been identified during bacterial infection, paving the way for analysis of their biological functions. Long noncoding RNAs (lncRNAs) are important regulators of multiple biological processes. However, little is known regarding their role in bacterial infection in mammary epithelial cells. Hence, RNA-sequencing was performed by infecting primary mammary epithelial cells (pMECs) with both gram-negative (E. coli) and gram-positive bacteria (S. aureus). Using stringent pipeline, a set of 1957 known and 1175 novel lncRNAs were identified, among which, 112 lncRNAs were found differentially expressed in bacteria challenged PMECs compared with the control. Additionally, potential targets of the lncRNAs were predicted in cis- and trans-configuration. KEGG analysis revealed that DE lncRNAs were associated with at least 15 immune-related pathways. Therefore, our study revealed that bacterial challenge triggers the expression of lncRNAs associated with immune response and defense mechanisms in goat mammary epithelial cells.


Assuntos
Infecções Bacterianas , RNA Longo não Codificante , Animais , Infecções Bacterianas/veterinária , Células Epiteliais , Escherichia coli , Feminino , Perfilação da Expressão Gênica , Cabras , Glândulas Mamárias Animais , Proteômica , RNA Longo não Codificante/genética , Staphylococcus aureus
9.
Cell Commun Signal ; 20(1): 2, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980167

RESUMO

Scavenger receptors belong to a superfamily of proteins that are structurally heterogeneous and encompass the miscellaneous group of transmembrane proteins and soluble secretory extracellular domain. They are functionally diverse as they are involved in various disorders and biological pathways and their major function in innate immunity and homeostasis. Numerous scavenger receptors have been discovered so far and are apportioned in various classes (A-L). Scavenger receptors are documented as pattern recognition receptors and known to act in coordination with other co-receptors such as Toll-like receptors in generating the immune responses against a repertoire of ligands such as microbial pathogens, non-self, intracellular and modified self-molecules through various diverse mechanisms like adhesion, endocytosis and phagocytosis etc. Unlike, most of the scavenger receptors discussed below have both membrane and soluble forms that participate in scavenging; the role of a potential scavenging receptor Angiotensin-Converting Enzyme-2 has also been discussed whereby only its soluble form might participate in preventing the pathogen entry and replication, unlike its membrane-bound form. This review majorly gives an insight on the functional aspect of scavenger receptors in host defence and describes their mode of action extensively in various immune pathways involved with each receptor type. Video abstract.


Assuntos
Imunidade Inata , Receptores Toll-Like , Endocitose , Fagocitose , Receptores Depuradores/metabolismo
10.
Mol Biol Rep ; 48(3): 2527-2531, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33783682

RESUMO

Mineral (Fe/Zn) stress significantly affects fundamental metabolic and physiological responses in plants that results in reduction of plant growth and development. Deficiency of these micronutrients leads to inhibition of photosynthesis by having impact on various crucial biological processes like protein synthesis, primary and secondary metabolism and carbohydrate partitioning between source and sink tissues. In the present study, common bean variety Shalimar French Bean-1 (SFB-1) plants were used as an experimental material and were grown under in vitro condition on four different MGRL media i.e. normal MGRL medium (Control), MGRL without Fe (0-Fe), MGRL without Zinc (0-Zn) and MGRL with excess Zn (300-Zn) for 21 days under optimum conditions. Shoot and root tissues from all the treatments were harvested and further subjected to estimation of total chlorophyll, total sugar and extraction of total RNA for differential gene expression of sugar transporter 13 (STP13). We observed significant decrease in total chlorophyll content in samples harvested from mineral stress plants. However, the concentration of total sugar and fold expression of STP13 gene was significantly higher in shoots of Fe/Zn stressed and in roots of 300-Zn plants. We observed higher accumulation of sugar under stress condition that correlated with high expression of sugar transporter 13 (STP 13). Further, we observed decrease in the chlorophyll content under stress conditions. Based on these findings, we propose the role of sugar driven signaling in decreasing photosynthesis in case of common bean. The decrease in photosynthesis is confirmed by observing significant decrease in chlorophyll content in stressed plants.


Assuntos
Ferro/toxicidade , Phaseolus/fisiologia , Fotossíntese , Proteínas de Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico , Açúcares/metabolismo , Zinco/toxicidade , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Phaseolus/efeitos dos fármacos , Phaseolus/genética , Fotossíntese/efeitos dos fármacos , Fotossíntese/genética , Proteínas de Plantas/genética , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
11.
Biol Proced Online ; 22: 10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32467674

RESUMO

ABSTRACT: Circular RNAs (circRNAs) have emerged as a universal novel class of eukaryotic non-coding RNA (ncRNA) molecules and are becoming a new research hotspot in RNA biology. They form a covalent loop without 5' cap and 3' tail, unlike their linear counterparts. Endogenous circRNAs in mammalian cells are abundantly conserved and discovered so far. In the biogenesis of circRNAs exonic, intronic, reverse complementary sequences or RNA-binding proteins (RBPs) play a very important role. Interestingly, the majority of them are highly conserved, stable, resistant to RNase R and show developmental-stage/tissue-specific expression. CircRNAs play multifunctional roles as microRNA (miRNA) sponges, regulators of transcription and post-transcription, parental gene expression and translation of proteins in various diseased conditions. Growing evidence shows that circRNAs play an important role in neurological disorders, atherosclerotic vascular disease, and cancer and potentially serve as diagnostic or predictive biomarkers due to its abundance in various biological samples. Here, we review the biogenesis, properties, functions, and impact of circRNAs on various diseases.

12.
BMC Vet Res ; 14(1): 180, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884179

RESUMO

BACKGROUND: Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) is a zoonotic pathogen responsible for severe intestinal pathology in young chickens. Natural resistance-associated macrophage protein (NRAMP) family has been shown to be associated with resistance to intracellular pathogens, including Salmonella Typhimurium. The role of NRAMP proteins in macrophage defence against microbial infection has been ascribed to changes in the metal-ion concentrations inside the bacteria-containing phagosomes. The present study was conducted to investigate tissue-specific (liver, spleen and caecum) expression kinetics of NRAMP gene family (NRAMP1 and NRAMP2) in broilers from day 0 to day 15 after Salmonella Typhimurium challenge concomitant to clinical, blood biochemical and immunological parameters survey. RESULTS: Clinical symptoms appeared 4 days post-infection (dpi) in infected birds. Symptoms like progressive weakness, anorexia, diarrhoea and lowering of the head were seen in infected birds one-week post-infection. On postmortem examination, liver showed congestion, haemorrhage and necrotic foci on the surface, while as the spleen, lungs and intestines revealed congestion and haemorrhages. Histopathological alterations were principally found in liver comprising of necrosis, reticular endothelial hyperplasia along with mononuclear cell and heterophilic infiltration. Red Blood Cell (RBC) count, Haemoglobin (Hb) and Packed Cell Volume (PCV) decreased significantly (P < 0.05) in blood while heterophil counts increased up to 7 days post-infection. Serum glucose, aspartate transaminase (AST) and alanine transaminase (ALT) enzymes concentrations increased significantly throughout the study. A gradual increase of specific humoral IgG response confirmed Salmonella infection. Meanwhile, expression of NRAMP1 and NRAMP2 genes was differentially regulated after infection in tissues such as liver, spleen and caecum known to be the target of Salmonella Typhimurium replication in the chicken. CONCLUSION: Thus the specific roles of NRAMP1 and NRAMP2 genes in Salmonella Typhimurium induced disease may be supposed from their differential expression according to tissues and timing after per os infection. However, these roles remain to be analyzed related to the severity of the disease which can be estimated by blood biochemistry and immunological parameters.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Galinhas , Doenças das Aves Domésticas/metabolismo , Salmonelose Animal/metabolismo , Salmonella typhimurium , Animais , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia
13.
Biol Proced Online ; 19: 3, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28465674

RESUMO

Immune responses combat various infectious agents by inducing inflammatory responses, antimicrobial pathways and adaptive immunity. The polygenic responses to these external stimuli are temporally and coordinately regulated. Specific lncRNAs are induced to modulate innate and adaptive immune responses which can function through various target interactions like RNA-DNA, RNA-RNA, and RNA-protein interaction and hence affect the immunogenic regulation at various stages of gene expression. LncRNA are found to be present in various immune cells like monocytes, macrophages, dendritic cells, neutrophils, T cells and B cells. They have been shown to be involved in many biological processes, including the regulation of the expression of genes, the dosage compensation and genomics imprinting, but the knowledge how lncRNAs are regulated and how they alter cell differentiation/function is still obscure. Further dysregulation of lncRNA has been seen in many diseases, but as yet very less research has been carried out to understand the role of lncRNAs in regulation during host-pathogens interactions. In this review, we summarize the functional developments and mechanism of action of lncRNAs, in immunity and defense of host against pathogens.

15.
Genetica ; 142(6): 507-16, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25366848

RESUMO

Despite numerous studies on the taxonomy of a highly complex group of schizothoracine (snow trouts), with over five recognized species from Kashmir, India (Schizothorax niger, Schizothorax esocinus, Schizothorax plagiostomus, Schizothorax curvifrons and Schizothorax labiatus) based on traditional morphological data, the relationships between these species is poorly understood and the taxonomic validity is still under debate. To resolve the evolutionary relationships among these species, we sequenced mitochondrial fragments, including 16Sr RNA, Cytb and the D-loop. Separate analyses of 16S and Cytb showed intermixing of the species and 16S was found more conserved than Cytb. The D-loop was found highly variable and showed length variation between and within species. Length variation was observed in di-nucleotide (TA)n microsatellite repeats with a variable number of repeat units (n = 7-14) that did not show heteroplasmy. Central conserved sequence blocks (CSBs) in D-loop sequences were found comparable to other vertebrate species. All phylogenetic reconstructions recovered the focal taxa as a monophyletic clade within the schizothoracines. Analyses with combined mitochondrial data sets showed close genetic relationships of all the five species. In addition to a close relationship between S. niger and S. curvifrons, two distinct groupings of S. ecoscinus and S. plagiostomus were supported by all the analyses. This study gives an insight into molecular phylogeny of the species and improves our understanding of historical and taxonomic relationships derived from morphological and ecological studies.


Assuntos
Evolução Biológica , Cyprinidae/classificação , DNA Mitocondrial/genética , Filogenia , Animais , Teorema de Bayes , Cyprinidae/genética , Citocromos b/genética , Índia , Funções Verossimilhança , Repetições de Microssatélites , Modelos Genéticos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
J Mater Chem B ; 12(34): 8431-8443, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39101879

RESUMO

Wound healing represents a complex biological process crucial for tissue repair and regeneration. In recent years, biomaterial-based scaffolds loaded with bioactive compounds have emerged as promising therapeutic strategies to accelerate wound healing. In this study, we investigated the properties and wound healing effects of cryogels loaded with calcium peroxide (CP) and berberine (BB). The cryogels were synthesized through a cryogenic freezing technique and displayed pore diameters of 83 ± 39 µm, with porosity exceeding 90%. Following 20 days of degradation, the percentage of remaining weight for GPC and GPC-CP-BB cryogels was determined to be 12.42 ± 2.45% and 10.78 ± 2.08%, respectively. Moreover, the swelling ratios after 3 minutes for GPC and GPC-CP-BB were found to be 22.10 ± 0.05 and 21.00 ± 0.07, respectively. In vitro investigations demonstrated the cytocompatibility of the cryogels, with sufficient adhesion and proliferation of fibroblast (NIH-3T3) cells observed on the scaffolds, along with their hemocompatibility. Furthermore, the cryogels exhibited sustained release kinetics of both calcium peroxide and berberine, ensuring prolonged therapeutic effects at the wound site. In vivo assessment using a rat model of full-thickness skin wounds demonstrated accelerated wound closure rates in animals treated with the GPC-CP-BB scaffold compared to controls. Histological analysis revealed enhanced granulation tissue formation, re-epithelialization, and collagen deposition in the GPC-CP-BB group. Overall, our findings suggest that the scaffold loaded with CP and BB holds great promise as a therapeutic approach for promoting wound healing. Its multifaceted properties offer a multifunctional platform for localized delivery of therapeutic agents while providing mechanical support and maintaining a favorable microenvironment for tissue regeneration.


Assuntos
Berberina , Criogéis , Peróxidos , Cicatrização , Berberina/química , Berberina/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Criogéis/química , Camundongos , Ratos , Células NIH 3T3 , Peróxidos/química , Peróxidos/farmacologia , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Ratos Sprague-Dawley , Masculino , Porosidade
17.
Vet Anim Sci ; 23: 100331, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38283334

RESUMO

This study attempts to isolate a candidate growth promoter from the ovine paunch waste and scrutinize its effects on the production performance of broiler chickens as compared to mannan-oligosaccharide (MOS), a prebiotic, and lincomycin, an antibiotic growth promoter (AB). The paunch waste collected from slaughtered sheep was processed to remove particulate matter. The clarified liquid was then added to an excess of ethanol (1:9 ratio), and the resultant precipitate {(novel growth-promoting paunch extract (NGPE)} was collected, dried, and stored. In vitro increase in cell density for probiotic bacteria viz. Lactobacillus rhamnosus and Enterococcus faecalis (Log10 CFU/ml) were significantly higher (P < 0.01) in NGPE supplemented media (2.78 ± 0.11 and 2.77 ± 0.10) as compared to that on MOS (1.28 ± 0.05 and 2.49 ± 0.09) and glucose (1.09 ± 0.04 and 1.12 ± 0.04) supplemented media. In the in-vivo trial of six weeks duration with broiler chickens (Cobb-400), NGPE supplementation resulted in significantly higher growth in weeks IV (P < 0.05) and VI (P < 0.01) of age in comparison to MOS and AGP supplemented groups, a lower (P < 0.01) cumulative feed conversion ratio in comparison to MOS supplemented groups, and a higher (P < 0.01) cumulative protein efficiency ratio compared to MOS and AGP supplementation. NGPE supplementation also lowered lipid peroxidation (P < 0.01), increased reduced glutathione activity (P < 0.01) in chicken erythrocytes, and boosted the lactic acid bacteria count in the cecal contents (P < 0.01). This is the first report of the isolation of a paunch waste extract that increased the in vitro growth of probiotic bacteria and improved the production performance of broiler chickens.

18.
Int Immunopharmacol ; 126: 111213, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37995572

RESUMO

Mastitis, an inflammatory disease of the mammary gland, imposes a significant financial burden on the dairy sector. However, the specific molecular mechanisms underlying their interactions with goat mammary epithelial cells (GMECs) remain poorly understood. This study aimed to investigate the transcriptomic response of GMECs during infection with E. coli and S. aureus, providing insights into the host-pathogen interactions. Differential expression of gene (DEGs) analysis was done to find genes and pathways dysregulated in the wake of infection. E. coli infection triggered a robust upregulation of immune response genes, including pro-inflammatory chemokines and cytokines as well as genes involved in tissue repair and remodeling. Conversely, S. aureus infection showed a more complex pattern, involving the activation of immune-related gene as well as those involved in autophagy, apoptosis and tissue remodeling. Furthermore, several key pathways, such as Toll-like receptor signaling and cytokine-cytokine receptor interaction, were differentially modulated in response to each pathogen. Understanding the specific responses of GMECs to these pathogens will provide a foundation for understanding the complex dynamics of infection and host response, offering potential avenues for the development of novel strategies to prevent and treat bacterial infections in both animals and humans.


Assuntos
Infecções por Escherichia coli , Mastite Bovina , Infecções Estafilocócicas , Humanos , Feminino , Animais , Bovinos , Escherichia coli/fisiologia , Staphylococcus aureus/fisiologia , Regulação da Expressão Gênica , Cabras/genética , Cabras/metabolismo , Glândulas Mamárias Animais/metabolismo , Perfilação da Expressão Gênica , Citocinas/metabolismo , Células Epiteliais/metabolismo
19.
PeerJ ; 12: e17394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827296

RESUMO

The increasing frequency of zoonotic spillover events and viral mutations in low and middle-income countries presents a critical global health challenge. Contributing factors encompass cultural practices like bushmeat consumption, wildlife trade for traditional medicine, habitat disruption, and the encroachment of impoverished settlements onto natural habitats. The existing "vaccine gap" in many developing countries exacerbates the situation by allowing unchecked viral replication and the emergence of novel mutant viruses. Despite global health policies addressing the root causes of zoonotic disease emergence, there is a significant absence of concrete prevention-oriented initiatives, posing a potential risk to vulnerable populations. This article is targeted at policymakers, public health professionals, researchers, and global health stakeholders, particularly those engaged in zoonotic disease prevention and control in low and middle-income countries. The article underscores the importance of assessing potential zoonotic diseases at the animal-human interface and comprehending historical factors contributing to spillover events. To bridge policy gaps, comprehensive strategies are proposed that include education, collaborations, specialized task forces, environmental sampling, and the establishment of integrated diagnostic laboratories. These strategies advocate simplicity and unity, breaking down barriers, and placing humanity at the forefront of addressing global health challenges. Such a strategic and mental shift is crucial for constructing a more resilient and equitable world in the face of emerging zoonotic threats.


Assuntos
Países em Desenvolvimento , Zoonoses , Humanos , Animais , Zoonoses/prevenção & controle , Zoonoses/virologia , Zoonoses/epidemiologia , Zoonoses/transmissão , Mutação , Política de Saúde/legislação & jurisprudência , Saúde Global , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Doenças Transmissíveis Emergentes/transmissão
20.
Viruses ; 15(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36992357

RESUMO

Marek's disease virus (MDV), a highly cell-associated oncogenic α-herpesvirus, is the etiological agent of T cell lymphomas and neuropathic disease in chickens known as Marek's disease (MD). Clinical signs of MD include neurological disorders, immunosuppression, and lymphoproliferative lymphomas in viscera, peripheral nerves, and skin. Although vaccination has greatly reduced the economic losses from MD, the molecular mechanism of vaccine-induced protection is largely unknown. To shed light on the possible role of T cells in immunity induced by vaccination, we vaccinated birds after the depletion of circulating T cells through the IP/IV injection of anti-chicken CD4 and CD8 monoclonal antibodies, and challenged them post-vaccination after the recovery of T cell populations post-treatment. There were no clinical signs or tumor development in vaccinated/challenged birds with depleted CD4+ or CD8+ T cells. The vaccinated birds with a combined depletion of CD4+ and CD8+ T cells, however, were severely emaciated, with atrophied spleens and bursas. These birds were also tumor-free at termination, with no virus particles detected in the collected tissues. Our data indicated that CD4+ and CD8+ T lymphocytes did not play a critical role in vaccine-mediated protection against MDV-induced tumor development.


Assuntos
Herpesvirus Galináceo 2 , Linfoma , Doença de Marek , Vacinas Virais , Animais , Linfócitos T CD8-Positivos , Galinhas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa