RESUMO
Recent advances in cancer immunotherapy have improved patient survival. However, only a minority of patients with pulmonary metastatic disease respond to treatment with checkpoint inhibitors. As an alternate approach, we have tested the ability of systemically administered 1V270, a toll-like receptor 7 (TLR7) agonist conjugated to a phospholipid, to inhibit lung metastases in two variant murine 4T1 breast cancer models, as well as in B16 melanoma, and Lewis lung carcinoma models. In the 4T1 breast cancer models, 1V270 therapy inhibited lung metastases if given up to a week after primary tumor initiation. The treatment protocol was facilitated by the minimal toxic effects exerted by the phospholipid TLR7 agonist compared with the unconjugated agonist. 1V270 exhibited a wide therapeutic window and minimal off-target receptor binding. The 1V270 therapy inhibited colonization by tumor cells in the lungs in an NK cell dependent manner. Additional experiments revealed that single administration of 1V270 led to tumor-specific CD8+ cell-dependent adaptive immune responses that suppressed late-stage metastatic tumor growth in the lungs. T cell receptor (TCR) repertoire analyses showed that 1V270 therapy induced oligoclonal T cells in the lungs and mediastinal lymph nodes. Different animals displayed commonly shared TCR clones following 1V270 therapy. Intranasal administration of 1V270 also suppressed lung metastasis and induced tumor-specific adaptive immune responses. These results indicate that systemic 1V270 therapy can induce tumor-specific cytotoxic T cell responses to pulmonary metastatic cancers and that TCR repertoire analyses can be used to monitor, and to predict, the response to therapy.
Assuntos
Adenina/análogos & derivados , Linfócitos T CD8-Positivos/imunologia , Imunidade Celular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Glicoproteínas de Membrana/agonistas , Ácidos Fosfatídicos/farmacologia , Receptor 7 Toll-Like/agonistas , Adenina/farmacologia , Administração Intranasal , Animais , Linfócitos T CD8-Positivos/patologia , Feminino , Imunidade Celular/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Receptores de Antígenos de Linfócitos T/imunologia , Receptor 7 Toll-Like/imunologiaRESUMO
INTRODUCTION: Robust randomised trial data have shown that routine preoperative (pre-op) testing for cataract surgery patients is inappropriate. While guidelines have discouraged testing since 2002, cataract pre-op testing rates have remained unchanged since the 1990s. Given the challenges of reducing low-value care despite strong consensus around the evidence, innovative approaches are needed to promote high-value care. This trial evaluates the impact of an interdisciplinary electronic health record (EHR) intervention that is informed by behavioural economic theory. METHODS AND ANALYSIS: This pragmatic randomised trial is being conducted at UCLA Health between June 2021 and June 2022 with a 12-month follow-up period. We are randomising all UCLA Health physicians who perform pre-op visits during the study period to one of the three nudge arms or usual care. These three nudge alerts address (1) patient harm, (2) increased out-of-pocket costs for patients and (3) psychological harm to the patients related to pre-op testing. The nudges are triggered when a physician starts to order a pre-op test. We hypothesise that receipt of a nudge will be associated with reduced pre-op testing. The primary outcome will be the change in the percentage of patients undergoing pre-op testing at 12 months. Secondary outcomes will include the percentage of patients undergoing specific categories of pre-op tests (labs, EKGs, chest X-rays (CXRs)), the efficacy of each nudge, same-day surgery cancellations and cost savings. ETHICS AND DISSEMINATION: The study protocol was approved by the institutional review board of the University of California, Los Angeles as well as a nominated Data Safety Monitoring Board. If successful, we will have created a tool that can be disseminated rapidly to EHR vendors across the nation to reduce inappropriate testing for the most common low-risk surgical procedures in the country. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov identifier: NCT04104256.
Assuntos
Extração de Catarata , Catarata , Economia Comportamental , Registros Eletrônicos de Saúde , Humanos , Cuidados de Baixo Valor , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Most vaccine adjuvants directly stimulate and activate antigen presenting cells but do not sustain immunostimulation of these cells. A high throughput screening (HTS) strategy was designed to identify compounds that would sustain NF-κB activation by a stimulus from the Toll-like receptor (TLR)4 ligand, lipopolysaccharide (LPS). Several pilot studies optimized the parameters and conditions for a cell based NF-κB reporter assay in human monocytic THP-1 cells. The final assay evaluated prolongation of LPS induced NF-κB activation at 12 h. The dynamic range of the assay was confirmed in a pilot screen of 14â¯631 compounds and subsequently in a main extensive screen with 166â¯304 compounds. Hit compounds were identified using an enrichment strategy based on unsupervised chemoinformatic clustering, and also by a naiÌve "Top X" approach. A total of 2011 compounds were then rescreened for levels of coactivation with LPS at 5 h and 12 h, which provided kinetic profiles. Of the 407 confirmed hits, compounds that showed correlation of the kinetic profiles with the structural similarities led to identification of four chemotypes: pyrimido[5,4-b]indoles, 4H-chromene-3-carbonitriles, benzo[d][1,3]dioxol-2-ylureas, and tetrahydrothieno[2,3-c]pyridines, which were segregated by 5 h and 12 h kinetic characteristics. Unlike the TLR4 agonistic pyrimidoindoles identified in previous studies, the revealed pyrimidoindoles in the present work did not intrinsically stimulate TLR4 nor induce NF-κB but rather prolonged NF-κB signaling induced by LPS. A 42-member combinatorial library was synthesized which led to identification of potent N3-alkyl substituted pyrimidoindoles that were not only active in vitro but also enhanced antibody responses in vivo when used as a coadjuvant. The novel HTS strategy led to identification of compounds that are intrinsically quiescent but functionally prolong stimulation by a TLR4 ligand and thereby potentiate vaccine efficacy.
Assuntos
Adjuvantes Imunológicos/química , Indóis/química , NF-kappa B/metabolismo , Pirimidinas/química , Bibliotecas de Moléculas Pequenas/química , Receptor 4 Toll-Like/agonistas , Adjuvantes Imunológicos/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular , Ensaios de Triagem em Larga Escala , Humanos , Imunização , Imunoglobulina G/biossíntese , Indóis/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Pirimidinas/farmacologia , Relação Quantitativa Estrutura-AtividadeRESUMO
Previous high throughput screening studies led to the discovery of two novel, nonlipid-like chemotypes as Toll-like receptor 4 (TLR4) agonists. One of these chemotypes, the pyrimido[5,4-b]indoles, was explored for structure-activity relationship trends relative to production of TLR4 dependent cytokines/chemokines, resulting in a semioptimized lead (compound 1) that provided a starting point for further optimization studies. In this report, compounds belonging to three areas of structural modification were evaluated for biological activity using murine and human TLR4 reporter cells, primary murine bone marrow derived dendritic cells, and human peripheral blood mononuclear cells. The compounds bearing certain aryl groups at the C8 position, such as phenyl (36) and ß-naphthyl (39), had potencies significantly greater than compound 1. Compound 36 displayed human TLR4 agonist activity at submicromolar concentrations. The computational analysis suggests that the improved potency of these C8-aryl derivatives may be the result of additional binding interactions at the interface of the TLR4/myeloid differentiation protein-2 (MD-2) complex.
Assuntos
Indóis/farmacologia , Pirimidinas/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Humanos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/síntese química , Fatores Imunológicos/farmacologia , Fatores Imunológicos/toxicidade , Indóis/administração & dosagem , Indóis/química , Indóis/toxicidade , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Pirimidinas/administração & dosagem , Pirimidinas/química , Pirimidinas/toxicidade , Relação Estrutura-AtividadeRESUMO
Checkpoint inhibitors have demonstrated efficacy in patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). However, the majority of patients do not benefit from these agents. To improve the efficacy of checkpoint inhibitors, intratumoral (i.t.) injection with innate immune activators, TLR7 and TLR9 agonists, were tested along with programmed death-1 receptor (PD-1) blockade. The combination therapy suppressed tumor growth at the primary injected and distant sites in human papillomavirus-negative (HPV-negative) SCC7 and MOC1, and HPV-positive MEER syngeneic mouse models. Abscopal effects and suppression of secondary challenged tumor suggest that local treatment with TLR agonists in combination with anti-PD-1 provided systemic adaptive immunity. I.t. treatment with a TLR7 agonist increased the ratio of M1 to M2 tumor-associated macrophages (TAMs) and promoted the infiltration of tumor-specific IFNγ-producing CD8+ T cells. Anti-PD-1 treatment increased T cell receptor (TCR) clonality of CD8+ T cells in tumors and spleens of treated mice. Collectively, these experiments demonstrate that combination therapy with i.t. delivery of TLR agonists and PD-1 blockade activates TAMs and induces tumor-specific adaptive immune responses, leading to suppression of primary tumor growth and prevention of metastasis in HNSCC models.