Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36991642

RESUMO

Lung cancer is a high-risk disease that causes mortality worldwide; nevertheless, lung nodules are the main manifestation that can help to diagnose lung cancer at an early stage, lowering the workload of radiologists and boosting the rate of diagnosis. Artificial intelligence-based neural networks are promising technologies for automatically detecting lung nodules employing patient monitoring data acquired from sensor technology through an Internet-of-Things (IoT)-based patient monitoring system. However, the standard neural networks rely on manually acquired features, which reduces the effectiveness of detection. In this paper, we provide a novel IoT-enabled healthcare monitoring platform and an improved grey-wolf optimization (IGWO)-based deep convulution neural network (DCNN) model for lung cancer detection. The Tasmanian Devil Optimization (TDO) algorithm is utilized to select the most pertinent features for diagnosing lung nodules, and the convergence rate of the standard grey wolf optimization (GWO) algorithm is modified, resulting in an improved GWO algorithm. Consequently, an IGWO-based DCNN is trained on the optimal features obtained from the IoT platform, and the findings are saved in the cloud for the doctor's judgment. The model is built on an Android platform with DCNN-enabled Python libraries, and the findings are evaluated against cutting-edge lung cancer detection models.


Assuntos
Inteligência Artificial , Neoplasias Pulmonares , Humanos , Detecção Precoce de Câncer , Redes Neurais de Computação , Algoritmos , Neoplasias Pulmonares/diagnóstico , Atenção à Saúde
2.
Heliyon ; 9(11): e22336, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034697

RESUMO

The Internet-of-Things (IoT)-based healthcare systems are comprised of a large number of networked medical devices, wearables, and sensors that collect and transmit data to improve patient care. However, the enormous number of networked devices renders these systems vulnerable to assaults. To address these challenges, researchers advocated reducing execution time, leveraging cryptographic protocols to improve security and avoid assaults, and utilizing energy-efficient algorithms to minimize energy consumption during computation. Nonetheless, these systems still struggle with long execution times, assaults, excessive energy usage, and inadequate security. We present a novel whale-based attribute encryption scheme (WbAES) that empowers the transmitter and receiver to encrypt and decrypt data using asymmetric master key encryption. The proposed WbAES employs attribute-based encryption (ABE) using whale optimization algorithm behaviour, which transforms plain data to ciphertexts and adjusts the whale fitness to generate a suitable master public and secret key, ensuring security against unauthorized access and manipulation. The proposed WbAES is evaluated using patient health record (PHR) datasets collected by IoT-based sensors, and various attack scenarios are established using Python libraries to validate the suggested framework. The simulation outcomes of the proposed system are compared to cutting-edge security algorithms and achieved finest performance in terms of reduced 11 s of execution time for 20 sensors, 0.121 mJ of energy consumption, 850 Kbps of throughput, 99.85 % of accuracy, and 0.19 ms of computational cost.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa