Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(30): 10166-10171, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28657746

RESUMO

Nature employs sophisticated control of a structure's properties at multiple length scales to achieve its wet adhesion. However, the translation of such structures has very often been missing in biomimetic adhesives; in turn, their performance is significantly limited as compared to that of biological adhesion, e.g., from mussels. In this Perspective, we overview the major breakthroughs in this field, highlighting the recent advances that demonstrate that holistic multiscale translation is essential to biomimetic design. We argue that the multiscale coordination of numerous key elements in the natural adhesive system is essential to replicate the strong, instant, and durable wet adhesion of the marine sessile organism.


Assuntos
Materiais Biomiméticos/química , Bivalves/química , Adesividade , Animais , Molhabilidade
2.
Nat Mater ; 15(4): 407-412, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26779881

RESUMO

Polyelectrolyte complexation is critical to the formation and properties of many biological and polymeric materials, and is typically initiated by aqueous mixing followed by fluid-fluid phase separation, such as coacervation. Yet little to nothing is known about how coacervates evolve into intricate solid microarchitectures. Inspired by the chemical features of the cement proteins of the sandcastle worm, here we report a versatile and strong wet-contact microporous adhesive resulting from polyelectrolyte complexation triggered by solvent exchange. After premixing a catechol-functionalized weak polyanion with a polycation in dimethyl sulphoxide (DMSO), the solution was applied underwater to various substrates whereupon electrostatic complexation, phase inversion, and rapid setting were simultaneously actuated by water-DMSO solvent exchange. Spatial and temporal coordination of complexation, inversion and setting fostered rapid (∼25 s) and robust underwater contact adhesion (Wad ≥ 2 J m(-2)) of complexed catecholic polyelectrolytes to all tested surfaces including plastics, glasses, metals and biological materials.


Assuntos
Adesivos/química , Poliquetos/química , Água/química , Animais , Dimetil Sulfóxido/química , Poliaminas/química , Poliaminas/metabolismo , Poliquetos/metabolismo , Polieletrólitos , Polímeros/química , Polímeros/metabolismo
3.
Nano Lett ; 16(10): 6709-6715, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27673480

RESUMO

Despite the need for molecularly smooth self-assembled monolayers (SAMs) on silicon dioxide surfaces (the most common dielectric surface), current techniques are limited to nonideal silane grafting. Here, we show unique bioinspired zwitterionic molecules forming a molecularly smooth and uniformly thin SAM in "water" in <1 min on various dielectric surfaces, which enables a dip-coating process that is essential for organic electronics to become reality. This monomolecular layer leads to high mobility of organic field-effect transistors (OFETs) based on various organic semiconductors and source/drain electrodes. A combination of experimental and computational techniques confirms strong adsorption (Wad > 20 mJ m-2), uniform thickness (∼0.5 or ∼1 nm) and orientation (all catechol head groups facing the oxide surface) of the "monomolecular" layers. This robust (strong adsorption), rapid, and green SAM represents a promising advancement toward the next generation of nanofabrication compared to the current nonuniform and inconsistent polysiloxane-based SAM involving toxic chemicals, long processing time (>10 h), or heat (>80 °C).

4.
Biomacromolecules ; 17(5): 1869-74, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27046671

RESUMO

Marine mussels and barnacles are sessile biofouling organisms that adhere to a number of surfaces in wet environments and maintain remarkably strong bonds. Previous synthetic approaches to mimic biological wet adhesive properties have focused mainly on the catechol moiety, present in mussel foot proteins (mfps), and especially rich in the interfacial mfps, for example, mfp-3 and -5, found at the interface between the mussel plaque and substrate. Barnacles, however, do not use Dopa for their wet adhesion, but are instead rich in noncatecholic aromatic residues. Due to this anomaly, we were intrigued to study the initial contact adhesion properties of copolymerized acrylate films containing the key functionalities of barnacle cement proteins and interfacial mfps, for example, aromatic (catecholic or noncatecholic), cationic, anionic, and nonpolar residues. The initial wet contact adhesion of the copolymers was measured using a probe tack testing apparatus with a flat-punch contact geometry. The wet contact adhesion of an optimized, bioinspired copolymer film was ∼15.0 N/cm(2) in deionized water and ∼9.0 N/cm(2) in artificial seawater, up to 150 times greater than commercial pressure-sensitive adhesive (PSA) tapes (∼0.1 N/cm(2)). Furthermore, maximum wet contact adhesion was obtained at ∼pH 7, suggesting viability for biomedical applications.


Assuntos
Materiais Biomiméticos/química , Bivalves/química , Proteínas/química , Adesividade , Animais , Bivalves/metabolismo , Proteínas/metabolismo , Molhabilidade
5.
J Am Chem Soc ; 137(29): 9214-7, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26172268

RESUMO

Numerous attempts have been made to translate mussel adhesion to diverse synthetic platforms. However, the translation remains largely limited to the Dopa (3,4-dihydroxyphenylalanine) or catechol functionality, which continues to raise concerns about Dopa's inherent susceptibility to oxidation. Mussels have evolved adaptations to stabilize Dopa against oxidation. For example, in mussel foot protein 3 slow (mfp-3s, one of two electrophoretically distinct interfacial adhesive proteins in mussel plaques), the high proportion of hydrophobic amino acid residues in the flanking sequence around Dopa increases Dopa's oxidation potential. In this study, copolyampholytes, which combine the catechol functionality with amphiphilic and ionic features of mfp-3s, were synthesized and formulated as coacervates for adhesive deposition on surfaces. The ratio of hydrophilic/hydrophobic as well as cationic/anionic units was varied in order to enhance coacervate formation and wet adhesion properties. Aqueous solutions of two of the four mfp-3s-inspired copolymers showed coacervate-like spherical microdroplets (ϕ ≈ 1-5 µm at pH ∼4 (salt concentration ∼15 mM). The mfp-3s-mimetic copolymer was stable to oxidation, formed coacervates that spread evenly over mica, and strongly bonded to mica surfaces (pull-off strength: ∼17.0 mJ/m(2)). Increasing pH to 7 after coacervate deposition at pH 4 doubled the bonding strength to ∼32.9 mJ/m(2) without oxidative cross-linking and is about 9 times higher than native mfp-3s cohesion. This study expands the scope of translating mussel adhesion from simple Dopa-functionalization to mimicking the context of the local environment around Dopa.


Assuntos
Materiais Biomiméticos/química , Bivalves , Proteínas/química , Adesividade , Sequência de Aminoácidos , Animais , Eletroquímica , Dados de Sequência Molecular , Polimetil Metacrilato/química , Propriedades de Superfície
6.
Nat Mater ; 13(9): 867-72, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25064231

RESUMO

Polymeric materials that intrinsically heal at damage sites under wet or moist conditions are urgently needed for biomedical and environmental applications. Although hydrogels with self-mending properties have been engineered by means of mussel-inspired metal-chelating catechol-functionalized polymer networks, biological self-healing in wet conditions, as occurs in self-assembled holdfast proteins in mussels and other marine organisms, is generally thought to involve more than reversible metal chelates. Here we demonstrate self-mending in metal-free water of synthetic polyacrylate and polymethacrylate materials that are surface-functionalized with mussel-inspired catechols. Wet self-mending of scission in these polymers is initiated and accelerated by hydrogen bonding between interfacial catechol moieties, and consolidated by the recruitment of other non-covalent interactions contributed by subsurface moieties. The repaired and pristine samples show similar mechanical properties, suggesting that the triggering of complete self-healing is enabled underwater by the formation of extensive catechol-mediated interfacial hydrogen bonds.


Assuntos
Resinas Acrílicas/química , Ácidos Polimetacrílicos/química , Água/química , Materiais Biomiméticos/química , Catecóis/química , Propriedades de Superfície
7.
Biomacromolecules ; 12(5): 1839-43, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21413679

RESUMO

Thermal stability and optical transparency are important factors for flexible electronics and heat-related applications of pressure-sensitive adhesives (PSAs). However, current acryl- and rubber-based PSAs cannot attain the required thermal stability, and silicon-based PSAs are much more expensive than the alternatives. Oleo-chemicals including functionalized plant oils have great potential to replace petrochemicals. In this study, novel biobased PSAs from soybean oils were developed with excellent thermal stability and transparency as well as peel strength comparable to current PSAs. In addition, the fast curing (drying) property of newly developed biobased PSAs is essential for industrial applications. The results show that soybean oil-based PSA films and tapes have great potential to replace petro-based PSAs for a broad range of applications including flexible electronics and medical devices because of their thermal stability, transparency, chemical resistance, and potential biodegradability from triglycerides.


Assuntos
Adesivos/química , Compostos de Epóxi/química , Óleo de Soja/química , Varredura Diferencial de Calorimetria , Espectroscopia de Ressonância Magnética , Pressão , Espectroscopia de Infravermelho com Transformada de Fourier
8.
ACS Appl Mater Interfaces ; 10(2): 1520-1527, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29256590

RESUMO

In the construction of dental restorative polymer composite materials, surface priming on mineral fillers is essential to improve the mechanical performance of the composites. Here we present bioinspired catechol-functionalized primers for a tougher dental resin composite containing glass fillers. The catecholic primers with different polymerizable end groups were designed and then coated on glass surfaces using a simple drop-casting or dip-coating process. The surface binding ability and possible cross-linking (coupling or chemical bridging between the glass substrate and the dental resin) of the catecholic bifunctional primers were evaluated using atomic force microscopy, contact angle measurements, and the knife shear bonding test and compared to a state-of-the-art silane-based coupling agent. Various mechanical tests including shrinkage and compression tests of the dental resin composites were also conducted. Compression tests of the composites containing the catecholic primed fillers exhibited enhanced mechanical properties, owing to the bidentate hydrogen bonding of catechol moieties to the oxide mineral surface. Furthermore, the superior biocompatibility of the primed surface was confirmed via cell attachment assay, thus providing applicability of catecholic primers for practical dental and biomedical applications.


Assuntos
Resinas Compostas/química , Colagem Dentária , Teste de Materiais , Metacrilatos , Cimentos de Resina , Silanos , Estresse Mecânico , Propriedades de Superfície
9.
Science ; 358(6362): 502-505, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29074770

RESUMO

Materials often exhibit a trade-off between stiffness and extensibility; for example, strengthening elastomers by increasing their cross-link density leads to embrittlement and decreased toughness. Inspired by cuticles of marine mussel byssi, we circumvent this inherent trade-off by incorporating sacrificial, reversible iron-catechol cross-links into a dry, loosely cross-linked epoxy network. The iron-containing network exhibits two to three orders of magnitude increases in stiffness, tensile strength, and tensile toughness compared to its iron-free precursor while gaining recoverable hysteretic energy dissipation and maintaining its original extensibility. Compared to previous realizations of this chemistry in hydrogels, the dry nature of the network enables larger property enhancement owing to the cooperative effects of both the increased cross-link density given by the reversible iron-catecholate complexes and the chain-restricting ionomeric nanodomains that they form.

10.
Adv Mater ; 29(39)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28833661

RESUMO

Marine mussels use catechol-rich interfacial mussel foot proteins (mfps) as primers that attach to mineral surfaces via hydrogen, metal coordination, electrostatic, ionic, or hydrophobic bonds, creating a secondary surface that promotes bonding to the bulk mfps. Inspired by this biological adhesive primer, it is shown that a ≈1 nm thick catecholic single-molecule priming layer increases the adhesion strength of crosslinked polymethacrylate resin on mineral surfaces by up to an order of magnitude when compared with conventional primers such as noncatecholic silane- and phosphate-based grafts. Molecular dynamics simulations confirm that catechol groups anchor to a variety of mineral surfaces and shed light on the binding mode of each molecule. Here, a ≈50% toughness enhancement is achieved in a stiff load-bearing polymer network, demonstrating the utility of mussel-inspired bonding for processing a wide range of polymeric interfaces, including structural, load-bearing materials.

11.
Nat Commun ; 6: 8663, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26478273

RESUMO

Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m(-2)) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.


Assuntos
Adesivos/química , Bivalves , Catecóis/química , Animais
12.
Carbohydr Polym ; 110: 360-6, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-24906767

RESUMO

This is the first report on surface structural elucidation of individual nanocellulose as colloidal suspensions by 1D 1H, 2D heteronuclear single quantum coherence (HSQC) as well as 13C nuclear magnetic resonance (NMR). 1H NMR of rice straw CNCs (4.7 nm thick, 143 nm long, 0.04 sulfate per AG or 19.0% surface hydroxyl to sulfate conversion) resembled that of homogeneous cellulose solution. Conventional 2D HSQC NMR of CNC, CNF 1.5 (2-14 nm thick, several micrometers long, 0.10 COOH per AG) and CNF10 (2.0 nm thick, up to 1 µm long, 0.28 COOH per AG) gave H1:H2 ratios of 1.08:1, 0.97:1 and 0.94:1, respectively, all close to the theoretical 1:1 value for cellulose. The H1:H6 ratios determined from 2D HSQC NMR for CNCs, CNF1.5 and CNF10 were 1:1.47, 1:0.88 and 1:0.14, respectively, and corresponded to 26%, 56% and 93% C6 primary hydroxyl conversion to sulfate and carboxyl groups, consistent with, but more sensitive than those by conductometric titration and X-ray diffraction. Both 1H and 2D HSQC NMR data confirm that solution-state NMR detects nanocellulose surface carbons and protons primarily, validating this technique for direct surface characterization of nanocellulose in aqueous colloidal suspensions, presenting a sensitive and meaningful NMR tool for direct characterizing individual nanocellulose surfaces in never-dried state.


Assuntos
Celulose/química , Coloides/química , Nanofibras/química , Nanopartículas/química , Oryza/química , Celulose/ultraestrutura , Nanofibras/ultraestrutura , Nanopartículas/ultraestrutura , Ressonância Magnética Nuclear Biomolecular , Propriedades de Superfície , Suspensões , Água/química
14.
Adv Mater ; 24(16): 2123-9, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22431169

RESUMO

Amphiphilic reduced graphene oxide is obtained by oleo-functionalization with epoxidized methyl oleate (renewable feedstock) using a green process. The excellent diverse solvent-dispersivity of the oleo-reduced amphiphilic graphene and its reduction chemistry are confirmed in this study. Oleo-reduction of amphiphilic graphene is amenable to industrially viable processes to produce future graphene-based polymer composites and systems.


Assuntos
Técnicas de Química Sintética/métodos , Compostos de Epóxi/química , Grafite/química , Interações Hidrofóbicas e Hidrofílicas , Ácidos Oleicos/química , Óxidos/química , Ácido Láctico/química , Oxirredução , Poliésteres , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa