Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(12): 14940-14953, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38489840

RESUMO

Ni-rich NCM and SiOx electrode materials have garnered the most attention for advanced lithium-ion batteries (LIBs); however, severe parasitic reactions occurring at their interfaces are critical bottlenecks in their widespread application. In this study, an effective additive combination (VL) composed of vinylene carbonate (VC) and lithium difluoro(oxalato)borate (LiDFOB) is proposed for both Ni-rich NCM and SiOx electrode materials. The LiDFOB additive individually delivers inorganic-rich cathode-electrolyte interphase (CEI) and solid-electrolyte interphase (SEI) layers in anodic and cathodic polarizations before the VC additive. Subsequently, the VC additive is capable of the formation of additional CEI and SEI layers composed of relatively organic-rich components through an electrochemical reaction; thus, inorganic-organic hybridized CEI and SEI layers are simultaneously formed at the Ni-rich NCM and SiOx electrodes. Accordingly, the VL-assisted electrolyte exhibits remarkably prolonged cycling retention for the Ni-rich NCM cathode (86.5%) and SiOx anode (72.7%), whereas the standard electrolyte shows a substantial decrease in cycling retention for the Ni-rich NCM cathode (59.2%) and SiOx anode (18.1%). Further systematic analyses prove that VL-assisted electrolytes form effective interphases for Ni-rich NCM and SiOx electrodes simultaneously, thereby leading to stable and prolonged cycling behaviors of LIBs that offer high energy densities.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa