RESUMO
Infectious diseases caused by fungal sources are of great interest owing to their increasing prevalence. Invasive fungal infections, including invasive pulmonary aspergillosis caused by Aspergillus fumigatus, and Pneumocystis pneumonia caused by Pneumocystis jirovecii, are significant causes of morbidity and mortality among immunocompromised patients. The accurate and timely detection of these pathogens in this high-risk population is crucial for effective patient management. We developed a multiplex real-time polymerase chain reaction (PCR) assay, RF2 mRT-PCR, specifically designed to detect two respiratory fungi, P. jirovecii and A. fumigatus, and evaluated its performance in specimens of patients with lower respiratory tract infection. The performance was evaluated using 731 clinical samples, 55 reference species, and one synthetic DNA. The reproducibility test yielded a probit curve with a lower limit of detection of 19.82 copies/reaction for P. jirovecii and 64.20 copies/reaction for A. fumigatus. The RF2 mRT-PCR assay did not cross-react with non-A. fumigatus Aspergillus species or other common bacterial and viral species, and showed 100% in vitro sensitivity and specificity with reference assays. Additionally, it simultaneously detected A. fumigatus and P. jirovecii in co-infected samples. Therefore, the RF2 mRT-PCR assay is an efficient and reliable tool for in vitro diagnosis of A. fumigatus and P. jirovecii pulmonary infections.
RESUMO
Although coronavirus disease 2019 (COVID-19) is no longer a Public Health Emergency of International Concern (PHEIC), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has had a vast impact to date. Hence, continuous management is required, given the uncertainty caused by the potential evolution of SARS-CoV-2. Reverse transcription-quantitative PCR (RT-qPCR) diagnosis has been fundamental in overcoming this issue. In this study, the performances of two rapid RT-qPCR assays (Real-Q Direct SARS-CoV-2 Detection Kit and Allplex™ SARS-CoV-2 fast PCR Assay) with short PCR times were comparatively evaluated using a STANDARD M nCoV Real-Time Detection Kit (STANDARD M, conventional RT-qPCR assay). All kits showed a limit of detection values (102-103 copies/reaction). The evaluation showed that the two rapid assay tests had ≥97.89% sensitivity and ≥99.51% specificity (κ = 0.98) for individual samples and ≥97.32% sensitivity and ≥97.67% specificity for pooled samples compared to STANDARD M. These results indicate that the two rapid RT-qPCR kits, which showed significant time reduction in performance, are as effective as a conventional RT-qPCR assay. They are likely to increase not only the number of tests that can be performed but also the efficiency of sustainable management of COVID-19 in the long term.