Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Biol Chem ; 288(30): 22080-95, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23709268

RESUMO

Microsomal cytochrome b5 (cytb5) is a membrane-bound protein that modulates the catalytic activity of its redox partner, cytochrome P4502B4 (cytP450). Here, we report the first structure of full-length rabbit ferric microsomal cytb5 (16 kDa), incorporated in two different membrane mimetics (detergent micelles and lipid bicelles). Differential line broadening of the cytb5 NMR resonances and site-directed mutagenesis data were used to characterize the cytb5 interaction epitope recognized by ferric microsomal cytP450 (56 kDa). Subsequently, a data-driven docking algorithm, HADDOCK (high ambiguity driven biomolecular docking), was used to generate the structure of the complex between cytP4502B4 and cytb5 using experimentally derived restraints from NMR, mutagenesis, and the double mutant cycle data obtained on the full-length proteins. Our docking and experimental results point to the formation of a dynamic electron transfer complex between the acidic convex surface of cytb5 and the concave basic proximal surface of cytP4502B4. The majority of the binding energy for the complex is provided by interactions between residues on the C-helix and ß-bulge of cytP450 and residues at the end of helix α4 of cytb5. The structure of the complex allows us to propose an interprotein electron transfer pathway involving the highly conserved Arg-125 on cytP450 serving as a salt bridge between the heme propionates of cytP450 and cytb5. We have also shown that the addition of a substrate to cytP450 likely strengthens the cytb5-cytP450 interaction. This study paves the way to obtaining valuable structural, functional, and dynamic information on membrane-bound complexes.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Citocromos b5/química , Modelos Moleculares , Complexos Multiproteicos/química , Sequência de Aminoácidos , Animais , Arginina/química , Arginina/genética , Arginina/metabolismo , Sítios de Ligação/genética , Biocatálise , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos b5/genética , Citocromos b5/metabolismo , Transporte de Elétrons/genética , Heme/análogos & derivados , Heme/química , Heme/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Coelhos , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
3.
Proc Natl Acad Sci U S A ; 107(46): 19861-6, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21041664

RESUMO

Light-induced isomerization of the 11-cis-retinal chromophore in the visual pigment rhodopsin triggers displacement of the second extracellular loop (EL2) and motion of transmembrane helices H5, H6, and H7 leading to the active intermediate metarhodopsin II (Meta II). We describe solid-state NMR measurements of rhodopsin and Meta II that target the molecular contacts in the region of the ionic lock involving these three helices. We show that a contact between Arg135(3.50) and Met257(6.40) forms in Meta II, consistent with the outward rotation of H6 and breaking of the dark-state Glu134(3.49)-Arg135(3.50)-Glu247(6.30) ionic lock. We also show that Tyr223(5.58) and Tyr306(7.53) form molecular contacts with Met257(6.40). Together these results reveal that the crystal structure of opsin in the region of the ionic lock reflects the active state of the receptor. We further demonstrate that Tyr223(5.58) and Ala132(3.47) in Meta II stabilize helix H5 in an active orientation. Mutation of Tyr223(5.58) to phenylalanine or mutation of Ala132(3.47) to leucine decreases the lifetime of the Meta II intermediate. Furthermore, the Y223F mutation is coupled to structural changes in EL2. In contrast, mutation of Tyr306(7.53) to phenylalanine shows only a moderate influence on the Meta II lifetime and is not coupled to EL2.


Assuntos
Sequência Conservada/genética , Rodopsina/química , Rodopsina/metabolismo , Tirosina/metabolismo , Alanina/genética , Substituição de Aminoácidos/genética , Animais , Bovinos , Cristalografia por Raios X , Células HEK293 , Humanos , Ativação do Canal Iônico , Espectroscopia de Ressonância Magnética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Conformação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Transdução de Sinais , Relação Estrutura-Atividade
4.
Cureus ; 15(11): e48640, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38090413

RESUMO

Dengue is one of the most prevalent mosquito-borne diseases in today's world, especially in India. It is an important health problem and it is very important to address it promptly. Acquiring dengue during pregnancy can have a considerable influence on the health of the mother and baby. In dengue fever, moderate to severe consequences can occur in the mother. Severe dengue poses additional risks to pregnant women due to the likelihood of sequelae such as severe dengue, preeclampsia, gestational hypertension, anemia, maternal death and hemolysis, organ dysfunction, and even death. Concerns about perinatal outcomes in dengue-affected pregnancies have significantly increased. Compared to uninfected mothers, babies born to mothers with dengue are likely to have worse outcomes. Preterm birth and low birth weight are frequently observed in dengue-affected pregnancies, which can have serious effects on the health and development of the child. Complications such as respiratory distress, thrombocytopenia, and jaundice have also been created in the report. Another important consideration is the vertical transmission of dengue virus from mother to fetus. While infection rates can vary, it increases the chances of the virus crossing the placental barrier and harming a developing baby. Early diagnosis, accurate diagnosis, and care are needed to improve maternal and perinatal outcomes in dengue-infected pregnancies. This article discusses early interventions that can help reduce risks.

5.
PLoS One ; 16(6): e0249905, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34081697

RESUMO

Nucleotide-sugar transporters (NSTs) transport nucleotide-sugar conjugates into the Golgi lumen where they are then used in the synthesis of glycans. We previously reported crystal structures of a mammalian NST, the CMP-sialic acid transporter (CST) (Ahuja and Whorton 2019). These structures elucidated many aspects of substrate recognition, selectivity, and transport; however, one fundamental unaddressed question is how the transport activity of NSTs might be physiologically regulated as a means to produce the vast diversity of observed glycan structures. Here, we describe the discovery that an endogenous methylated form of cytidine monophosphate (m5CMP) binds and inhibits CST. The presence of m5CMP in cells results from the degradation of RNA that has had its cytosine bases post-transcriptionally methylated through epigenetic processes. Therefore, this work not only demonstrates that m5CMP represents a novel physiological regulator of CST, but it also establishes a link between epigenetic control of gene expression and regulation of glycosylation.


Assuntos
Transporte Biológico/fisiologia , Ácido N-Acetilneuramínico do Monofosfato de Citidina/metabolismo , Monofosfato de Citidina/análogos & derivados , Regulação da Expressão Gênica/fisiologia , Animais , Linhagem Celular , Monofosfato de Citidina/metabolismo , Epigênese Genética/genética , Glicosilação , Metilação , Proteínas de Transporte de Nucleotídeos/metabolismo , Processamento Pós-Transcricional do RNA/genética , Células Sf9 , Spodoptera
6.
Bio Protoc ; 10(6): e3551, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659525

RESUMO

Nucleotide-sugar transporters (NSTs) facilitate eukaryotic cellular glycosylation by transporting nucleotide-sugar conjugates into the Golgi lumen and endoplasmic reticulum for use by glycosyltransferases, while also transferring nucleotide monophosphate byproducts to the cytoplasm. Mutations in this family of proteins can cause a number of significant cellular pathologies, and wild type members can act as virulence factors for many parasites and fungi. Here, we describe an in vitro assay to measure the transport activity of the CMP-sialic acid transporter (CST), one of seven NSTs found in mammals. While in vitro transport assays have been previously described for CST, these studies failed to account for the fact that 1) commercially available stocks of CMP-sialic acid (CMP-Sia) are composed of ~10% of the higher-affinity CMP and 2) CMP-Sia is hydrolyzed into CMP and sialic acid in aqueous solutions. Herein we describe a method for treating CMP-Sia with a nonselective phosphatase, Antarctic phosphatase, to convert all free CMP to cytidine. This allows us to accurately measure substrate affinities and transport kinetics for purified CST reconstituted into proteoliposomes.

7.
J Am Chem Soc ; 131(42): 15160-9, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19795853

RESUMO

The visual pigment rhodopsin is unique among the G protein-coupled receptors in having an 11-cis retinal chromophore covalently bound to the protein through a protonated Schiff base linkage. The chromophore locks the visual receptor in an inactive conformation through specific steric and electrostatic interactions. This efficient inverse agonist is rapidly converted to an agonist, the unprotonated Schiff base of all-trans retinal, upon light activation. Here, we use magic angle spinning NMR spectroscopy to obtain the (13)C chemical shifts (C5-C20) of the all-trans retinylidene chromophore and the (15)N chemical shift of the Schiff base nitrogen in the active metarhodopsin II intermediate. The retinal chemical shifts are sensitive to the conformation of the chromophore and its molecular interactions within the protein-binding site. Comparison of the retinal chemical shifts in metarhodopsin II with those of retinal model compounds reveals that the Schiff base environment is polar. In particular, the (13)C15 and (15)Nepsilon chemical shifts indicate that the C horizontal lineN bond is highly polarized in a manner that would facilitate Schiff base hydrolysis. We show that a strong perturbation of the retinal (13)C12 chemical shift observed in rhodopsin is reduced in wild-type metarhodopsin II and in the E181Q mutant of rhodopsin. On the basis of the T(1) relaxation time of the retinal (13)C18 methyl group and the conjugated retinal (13)C5 and (13)C8 chemical shifts, we have determined that the conformation of the retinal C6-C7 single bond connecting the beta-ionone ring and the retinylidene chain is 6-s-cis in both the inactive and the active states of rhodopsin. These results are discussed within the general framework of ligand-activated G protein-coupled receptors.


Assuntos
Retinaldeído/química , Rodopsina/química , Sítios de Ligação , Linhagem Celular , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Mutação , Processos Fotoquímicos , Estrutura Terciária de Proteína , Retinaldeído/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
8.
Elife ; 82019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30985278

RESUMO

Nucleotide-sugar transporters (NSTs) are critical components of the cellular glycosylation machinery. They transport nucleotide-sugar conjugates into the Golgi lumen, where they are used for the glycosylation of proteins and lipids, and they then subsequently transport the nucleotide monophosphate byproduct back to the cytoplasm. Dysregulation of human NSTs causes several debilitating diseases, and NSTs are virulence factors for many pathogens. Here we present the first crystal structures of a mammalian NST, the mouse CMP-sialic acid transporter (mCST), in complex with its physiological substrates CMP and CMP-sialic acid. Detailed visualization of extensive protein-substrate interactions explains the mechanisms governing substrate selectivity. Further structural analysis of mCST's unique lumen-facing partially-occluded conformation, coupled with the characterization of substrate-induced quenching of mCST's intrinsic tryptophan fluorescence, reveals the concerted conformational transitions that occur during substrate transport. These results provide a framework for understanding the effects of disease-causing mutations and the mechanisms of this diverse family of transporters.


Assuntos
Ácido N-Acetilneuramínico do Monofosfato de Citidina/química , Ácido N-Acetilneuramínico do Monofosfato de Citidina/metabolismo , Monofosfato de Citidina/química , Monofosfato de Citidina/metabolismo , Animais , Transporte Biológico , Cristalografia por Raios X , Camundongos , Ligação Proteica , Conformação Proteica
9.
J Mol Biol ; 357(1): 163-72, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16414074

RESUMO

Isomerization of the 11-cis retinal chromophore in the visual pigment rhodopsin is coupled to motion of transmembrane helix H6 and receptor activation. We present solid-state magic angle spinning NMR measurements of rhodopsin and the metarhodopsin II intermediate that support the proposal that interaction of Trp265(6.48) with the retinal chromophore is responsible for stabilizing an inactive conformation in the dark, and that motion of the beta-ionone ring allows Trp265(6.48) and transmembrane helix H6 to adopt active conformations in the light. Two-dimensional dipolar-assisted rotational resonance NMR measurements are made between the C19 and C20-methyl groups of the retinal and uniformly 13C-labeled Trp265(6.48). The retinal C20-Trp265(6.48) contact present in the dark-state of rhodopsin is lost in metarhodopsin II, and a new contact is formed with the C19 methyl group. We have previously shown that the retinal translates 4-5 A toward H5 in metarhodopsin II. This motion, in conjunction with the Trp-C19 contact, implies that the Trp265(6.48) side-chain moves significantly upon rhodopsin activation. NMR measurements also show that a packing interaction in rhodopsin between Trp265(6.48) and Gly121(3.36) is lost in metarhodopsin II, consistent with H6 motion away from H3. However, a close contact between Gly120(3.35) on H3 and Met86(2.53) on H2 is observed in both rhodopsin and metarhodopsin II, suggesting that H3 does not change orientation significantly upon receptor activation.


Assuntos
Estrutura Secundária de Proteína , Rodopsina/metabolismo , Triptofano/metabolismo , Animais , Sítios de Ligação , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Retinaldeído/química , Retinaldeído/metabolismo , Rodopsina/química , Rodopsina/genética
10.
Sci Rep ; 5: 8392, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25687717

RESUMO

Mammalian cytochrome b5 (cyt b5) is a membrane-bound protein capable of donating an electron to cytochrome P450 (P450) in the P450 catalytic cycle. The interaction between cyt b5 and P450 has been reported to be affected by the substrates of P450; however, the mechanism of substrate modulation on the cyt b5-P450 complex formation is still unknown. In this study, the complexes between full-length rabbit cyt b5 and full-length substrate-free/substrate-bound cytochrome P450 2B4 (CYP2B4) are investigated using NMR techniques. Our findings reveal that the population of complexes is ionic strength dependent, implying the importance of electrostatic interactions in the complex formation process. The observation that the cyt b5-substrate-bound CYP2B4 complex shows a weaker dependence on ionic strength than the cyt b5-substrate-free CYP2B4 complex suggests the presence of a larger fraction of steoreospecific complexes when CYP2B4 is substrate-bound. These results suggest that a CYP2B4 substrate likely promotes specific interactions between cyt b5 and CYP2B4. Residues D65, V66, T70, D71 and A72 are found to be involved in specific interactions between the two proteins due to their weak response to ionic strength change. These findings provide insights into the mechanism underlying substrate modulation on the cyt b5-P450 complexation process.


Assuntos
Hidrocarboneto de Aril Hidroxilases/química , Citocromos b5/química , Ressonância Magnética Nuclear Biomolecular , Hidrocarboneto de Aril Hidroxilases/metabolismo , Família 2 do Citocromo P450 , Citocromos b5/metabolismo , Modelos Moleculares , Concentração Osmolar , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Especificidade por Substrato
11.
Structure ; 23(4): 713-23, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25752540

RESUMO

Bacterial ATP-binding cassette (ABC) importers play critical roles in nutrient acquisition and are potential antibacterial targets. However, structural bases for their inhibition are poorly defined. These pathways typically rely on substrate binding proteins (SBPs), which are essential for substrate recognition, delivery, and transporter function. We report the crystal structure of a Staphylococcus aureus SBP for Mn(II), termed MntC, in complex with FabC1, a potent antibody inhibitor of the MntABC pathway. This pathway is essential and highly expressed during S. aureus infection and facilitates the import of Mn(II), a critical cofactor for enzymes that detoxify reactive oxygen species (ROS). Structure-based functional studies indicate that FabC1 sterically blocks a structurally conserved surface of MntC, preventing its interaction with the MntB membrane importer and increasing wild-type S. aureus sensitivity to oxidative stress by more than 10-fold. The results define an SBP blocking mechanism as the basis for ABC importer inhibition by an engineered antibody fragment.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Fragmentos de Imunoglobulinas/farmacologia , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/imunologia , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/imunologia , Sítios de Ligação , Fragmentos de Imunoglobulinas/química , Dados de Sequência Molecular , Ligação Proteica , Staphylococcus aureus/enzimologia
12.
Science ; 350(6267): aac5464, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26680203

RESUMO

Voltage-gated sodium (Nav) channels propagate action potentials in excitable cells. Accordingly, Nav channels are therapeutic targets for many cardiovascular and neurological disorders. Selective inhibitors have been challenging to design because the nine mammalian Nav channel isoforms share high sequence identity and remain recalcitrant to high-resolution structural studies. Targeting the human Nav1.7 channel involved in pain perception, we present a protein-engineering strategy that has allowed us to determine crystal structures of a novel receptor site in complex with isoform-selective antagonists. GX-936 and related inhibitors bind to the activated state of voltage-sensor domain IV (VSD4), where their anionic aryl sulfonamide warhead engages the fourth arginine gating charge on the S4 helix. By opposing VSD4 deactivation, these compounds inhibit Nav1.7 through a voltage-sensor trapping mechanism, likely by stabilizing inactivated states of the channel. Residues from the S2 and S3 helices are key determinants of isoform selectivity, and bound phospholipids implicate the membrane as a modulator of channel function and pharmacology. Our results help to elucidate the molecular basis of voltage sensing and establish structural blueprints to design selective Nav channel antagonists.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/química , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Tiadiazóis/química , Tiadiazóis/farmacologia , Sequência de Aminoácidos , Membrana Celular/química , Cristalização/métodos , Cristalografia por Raios X , Análise Mutacional de DNA , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Percepção da Dor/efeitos dos fármacos , Engenharia de Proteínas , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
13.
Biomol NMR Assign ; 8(2): 409-13, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24105099

RESUMO

Microsomal cytochrome b5 plays a key role in the oxidation of a variety of exogenous and endogenous compounds, including drugs, fatty acids, cholesterol and steroid hormones. To better understand its functional properties in a membrane mimic environment, we carried out high-resolution solution NMR studies. Here we report resonance assignments for full-length rabbit cytochrome b5 embedded in dodecylphosphocholine micelles.


Assuntos
Membrana Celular/enzimologia , Citocromos b5/química , Ressonância Magnética Nuclear Biomolecular , Animais , Membrana Celular/química , Micelas , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Coelhos
14.
Sci Rep ; 3: 2556, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23989972

RESUMO

Though the importance of high-resolution structure and dynamics of membrane proteins has been well recognized, optimizing sample conditions to retain the native-like folding and function of membrane proteins for Nuclear Magnetic Resonance (NMR) or X-ray measurements has been a major challenge. While bicelles have been shown to stabilize the function of membrane proteins and are increasingly utilized as model membranes, the loss of their magnetic-alignment at low temperatures makes them unsuitable to study heat-sensitive membrane proteins like cytochrome-P450 and protein-protein complexes. In this study, we report temperature resistant bicelles that can magnetically-align for a broad range of temperatures and demonstrate their advantages in the structural studies of full-length microsomal cytochrome-P450 and cytochrome-b5 by solid-state NMR spectroscopy. Our results reveal that the N-terminal region of rabbit cytochrome-P4502B4, that is usually cleaved off to obtain crystal structures, is helical and has a transmembrane orientation with ~17° tilt from the lipid bilayer normal.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Bicamadas Lipídicas/química , Microssomos Hepáticos/química , Manejo de Espécimes/métodos , Sistema Enzimático do Citocromo P-450/análise , Humanos , Espectroscopia de Ressonância Magnética/métodos
15.
J Phys Chem B ; 117(44): 13851-60, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24107224

RESUMO

It has been well realized that the dependence of chemical shift anisotropy (CSA) tensors on the amino acid sequence, secondary structure, dynamics, and electrostatic interactions can be utilized in the structural and dynamic studies of proteins by NMR spectroscopy. In addition, CSA tensors could also be utilized to measure the structural interactions between proteins in a protein-protein complex. To this end, we report the experimentally measured backbone amide-(15)N CSA tensors for a membrane-bound 16.7 kDa full-length rabbit cytochrome-b5 (cytb5), in complexation with a 55.8 kDa microsomal rabbit cytochrome P450 2B4 (cytP4502B4). The (15)N-CSAs, determined using the (15)N CSA/(15)N-(1)H dipolar coupling transverse cross-correlated rates, for free cytb5 are compared with those for the cytb5 bound to cytP4502B4. An overall increase in backbone amide-(15)N transverse cross-correlated rates for the cytb5 residues in the cytb5-cytP450 complex is observed as compared to the free cytb5 residues. Due to fast spin-spin relaxation (T2) and subsequent broadening of the signals in the complex, we could measure amide-(15)N CSAs only for 48 residues of cytb5 as compared to 84 residues of free cytb5. We observed a change in (15)N CSA for most residues of cytb5 in the complex, as compared to free cytb5, suggesting a dynamic interaction between the oppositely charged surfaces of anionic cytb5 and cationic cytP450. The mean values of (15)N CSA determined for residues in helical, sheet, and turn regions of cytb5 in the complex are -184.5, -146.8, and -146.2 ppm, respectively, with an overall average value of -165.5 ppm (excluding the values from residues in more flexible termini). The measured CSA value for residues in helical conformation is slightly larger as compared to previously reported values. This may be attributed to the paramagnetic effect from Fe(III) of the heme in cytb5, which is similar to our previously reported values for the free cytb5.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos b5/metabolismo , Amidas/química , Animais , Sistema Enzimático do Citocromo P-450/química , Citocromos b5/química , Isótopos de Nitrogênio/química , Ressonância Magnética Nuclear Biomolecular , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Coelhos
16.
J Phys Chem B ; 116(24): 7181-9, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22620865

RESUMO

Chemical shift anisotropy (CSA) tensors are essential in the structural and dynamic studies of proteins using NMR spectroscopy. Results from relaxation studies in biomolecular solution and solid-state NMR experiments on aligned samples are routinely interpreted using well-characterized CSA tensors determined from model compounds. Since CSA tensors, particularly the (15)N CSA, highly depend on a number of parameters including secondary structure, electrostatic interaction, and the amino acid sequence, there is a need for accurately determined CSA tensors from proteins. In this study, we report the backbone amide-(15)N CSA tensors for a 16.7-kDa membrane-bound and paramagnetic-heme containing protein, rabbit Cytochrome b(5) (cytb(5)), determined using the (15)N CSA/(15)N-(1)H dipolar transverse cross-correlation rates. The mean values of (15)N CSA determined for residues in helical, sheet, and turn regions are -187.9, -166.0, and -161.1 ppm, respectively, with an overall average value of -171.7 ppm. While the average CSA value determined from this study is in good agreement with previous solution NMR experiments on small globular proteins, the CSA value determined for residues in helical conformation is slightly larger, which may be attributed to the paramagnetic effect from Fe(III) of the heme unit in cytb(5). However, like in previous solution NMR studies, the CSA values reported in this study are larger than the values measured from solid-state NMR experiments. We believe that the CSA parameters reported in this study will be useful in determining the structure, dynamics, and orientation of proteins, including membrane proteins, using NMR spectroscopy.


Assuntos
Citocromos b5/química , Ressonância Magnética Nuclear Biomolecular , Animais , Citocromos b5/metabolismo , Compostos Férricos/química , Heme/química , Isótopos de Nitrogênio/química , Coelhos
17.
J Phys Chem B ; 116(35): 10477-89, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22564141

RESUMO

Absorption of light by the visual pigment rhodopsin triggers a rapid cis-trans photoisomerization of its retinal chromophore and a series of conformational changes in both the retinal and protein. The largest structural change is an outward tilt of transmembrane helix H6 that increases the separation of the intracellular ends of H6 and H3 and opens up the G-protein binding site. In the dark state of rhodopsin, Glu247 at the intracellular end of H6 forms a salt bridge with Arg135 on H3 to tether H6 in an inactive conformation. The Arg135-Glu247 interaction is broken in the active state of the receptor, and Arg135 is then stabilized by interactions with Tyr223, Met257, and Tyr306 on helices H5, H6, and H7, respectively. To address the mechanism of H6 motion, solid-state NMR measurements are undertaken of Metarhodopsin I (Meta I), the intermediate preceding the active Metarhodopsin II (Meta II) state of the receptor. (13)C NMR dipolar recoupling measurements reveal an interhelical contact of (13)Cζ-Arg135 with (13)Cε-Met257 in Meta I but not with (13)Cζ-Tyr223 or (13)Cζ-Tyr306. These observations suggest that helix H6 has rotated in the formation of Meta I but that structural changes involving helices H5 and H7 have not yet occurred. Together, our results provide insights into the sequence of events leading up to the outward motion of H6, a hallmark of G protein-coupled receptor activation.


Assuntos
Rodopsina/química , Sítios de Ligação , Isótopos de Carbono/química , Células HEK293 , Humanos , Isomerismo , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Isótopos de Nitrogênio/química , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
18.
J Mol Biol ; 396(3): 510-27, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20004206

RESUMO

Structural restraints provided by solid-state NMR measurements of the metarhodopsin II intermediate are combined with molecular dynamics simulations to help visualize structural changes in the light activation of rhodopsin. Since the timescale for the formation of the metarhodopsin II intermediate (>1 ms) is beyond that readily accessible by molecular dynamics, we use NMR distance restraints derived from 13C dipolar recoupling measurements to guide the simulations. The simulations yield a working model for how photoisomerization of the 11-cis retinylidene chromophore bound within the interior of rhodopsin is coupled to transmembrane helix motion and receptor activation. The mechanism of activation that emerges is that multiple switches on the extracellular (or intradiscal) side of rhodopsin trigger structural changes that converge to disrupt the ionic lock between helices H3 and H6 on the intracellular side of the receptor.


Assuntos
Luz , Simulação de Dinâmica Molecular , Rodopsina/química , Rodopsina/metabolismo , Animais , Bovinos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica/efeitos da radiação , Estrutura Terciária de Proteína
19.
Nat Struct Mol Biol ; 17(5): 561-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20383142

RESUMO

The amyloid-beta(1-42) (Abeta42) peptide rapidly aggregates to form oligomers, protofibils and fibrils en route to the deposition of amyloid plaques associated with Alzheimer's disease. We show that low-temperature and low-salt conditions can stabilize disc-shaped oligomers (pentamers) that are substantially more toxic to mouse cortical neurons than protofibrils and fibrils. We find that these neurotoxic oligomers do not have the beta-sheet structure characteristic of fibrils. Rather, the oligomers are composed of loosely aggregated strands whose C termini are protected from solvent exchange and which have a turn conformation, placing Phe19 in contact with Leu34. On the basis of NMR spectroscopy, we show that the structural conversion of Abeta42 oligomers to fibrils involves the association of these loosely aggregated strands into beta-sheets whose individual beta-strands polymerize in a parallel, in-register orientation and are staggered at an intermonomer contact between Gln15 and Gly37.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Neurônios/citologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Sobrevivência Celular , Células Cultivadas , Temperatura Baixa , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Estrutura Secundária de Proteína , Sais/química
20.
Trends Pharmacol Sci ; 30(9): 494-502, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19732972

RESUMO

The activation mechanism of G protein-coupled receptors has presented a puzzle that finally may be close to solution. These receptors have a relatively simple architecture consisting of seven transmembrane helices that contain just a handful of highly conserved amino acids, yet they respond to light and a range of chemically diverse ligands. Recent NMR structural studies on the active metarhodopsin II intermediate of the visual receptor rhodopsin, along with the recent crystal structure of the apoprotein opsin, have revealed multiple structural elements or 'switches' that must be simultaneously triggered to achieve full activation. The confluence of several required structural changes is an example of "coincidence counting", which is often used by nature to regulate biological processes. In ligand-activated G protein-coupled receptors, the presence of multiple switches may provide an explanation for the differences between full, partial and inverse agonists.


Assuntos
Opsinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Rodopsina/metabolismo , Animais , Bovinos , Cristalização , Agonismo Inverso de Drogas , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Opsinas/agonistas , Conformação Proteica , Receptores Acoplados a Proteínas G/agonistas , Rodopsina/agonistas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa