Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE J Biomed Health Inform ; 27(8): 3818-3829, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37200132

RESUMO

Brain-computer interface (BCI) provides a novel technology for patients and healthy human subjects to control a robotic arm. Currently, BCI control of a robotic arm to complete the reaching and grasping tasks in an unstructured environment is still challenging because the current BCI technology does not meet the requirement of manipulating a multi-degree robotic arm accurately and robustly. BCI based on steady-state visual evoked potential (SSVEP) could output a high information transfer rate; however, the conventional SSVEP paradigm failed to control a robotic arm to move continuously and accurately because the users have to switch their gaze between the flickering stimuli and the target frequently. This study proposed a novel SSVEP paradigm in which the flickering stimuli were attached to the robotic arm's gripper and moved with it. First, an offline experiment was designed to investigate the effects of moving flickering stimuli on the SSVEP's responses and decoding accuracy. After that, contrast experiments were conducted, and twelve subjects were recruited to participate in a robotic arm control experiment using both the paradigm one (P1, with moving flickering stimuli) and the paradigm two (P2, conventional fixed flickering stimuli) using a block randomization design to balance their sequences. Double blinks were used to trigger the grasping action asynchronously whenever the subjects were confident that the position of the robotic arm's gripper was accurate enough. Experimental results showed that the paradigm P1 with moving flickering stimuli provided a much better control performance than the conventional paradigm P2 in completing a reaching and grasping task in an unstructured environment. Subjects' subjective feedback scored by a NASA-TLX mental workload scale also corroborated the BCI control performance. The results of this study suggest that the proposed control interface based on SSVEP BCI provides a better solution for robotic arm control to complete the accurate reaching and grasping tasks.


Assuntos
Interfaces Cérebro-Computador , Procedimentos Cirúrgicos Robóticos , Humanos , Potenciais Evocados Visuais , Eletroencefalografia/métodos , Estimulação Luminosa
2.
Artigo em Inglês | MEDLINE | ID: mdl-37815966

RESUMO

Steady-state visual evoked potential (SSVEP) based brain-computer interfaces (BCIs) have achieved an information transfer rate (ITR) of over 300 bits/min, but abundant training data is required. The performance of SSVEP algorithms deteriorates greatly under limited data, and the existing time-shift data augmentation method fails to improve it because the phase-locked requirement between training samples is violated. To address this issue, this study proposes a novel augmentation method, namely phase-locked time-shift (PLTS), for SSVEP-BCI. The similarity between epochs at different time moments was evaluated, and a unique time-shift step was calculated for each class to augment additional data epochs in each trial. The results showed that the PLTS significantly improved the classification performance of SSVEP algorithms on the BETA SSVEP datasets. Moreover, under the condition of one calibration block, by slightly prolonging the calibration duration (from 48 s to 51.5 s), the ITR increased from 40.88±4.54 bits/min to 122.61±7.05 bits/min with the PLTS. This study provides a new perspective on augmenting data epochs for training-based SSVEP-BCI, promotes the classification accuracy and ITR under limited training data, and thus facilitates the real-life applications of SSVEP-based brain spellers.


Assuntos
Interfaces Cérebro-Computador , Humanos , Potenciais Evocados Visuais , Eletroencefalografia/métodos , Estimulação Luminosa , Encéfalo/fisiologia , Algoritmos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa