Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioscience ; 71(12): 1274-1287, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34867087

RESUMO

There is a clear demand for quantitative literacy in the life sciences, necessitating competent instructors in higher education. However, not all instructors are versed in data science skills or research-based teaching practices. We surveyed biological and environmental science instructors (n = 106) about the teaching of data science in higher education, identifying instructor needs and illuminating barriers to instruction. Our results indicate that instructors use, teach, and view data management, analysis, and visualization as important data science skills. Coding, modeling, and reproducibility were less valued by the instructors, although this differed according to institution type and career stage. The greatest barriers were instructor and student background and space in the curriculum. The instructors were most interested in training on how to teach coding and data analysis. Our study provides an important window into how data science is taught in higher education biology programs and how we can best move forward to empower instructors across disciplines.

2.
Oecologia ; 189(3): 577-586, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30506303

RESUMO

Ecosystem engineers create physical changes in abiotic and biotic material, and through this process control the availability of resources for other species. Predators that abandon large portions of their prey may be ecosystem engineers that create habitat for carrion-dependent invertebrates that utilize carcasses during critical life-history periods. Between 04-May-2016 and 04-Oct-2016, we sampled beetle assemblages at 18 carcasses of prey killed by pumas and matching control sites in the southern Greater Yellowstone Ecosystem, USA, to measure the extent to which beetle families utilized these carcass "habitats". We used generalized linear-mixed models and linear-mixed effect models to examine changes in beetle abundance, species richness, and Simpson's Index of Diversity. We estimated kill rates and carrion production rates for individual pumas to better assess the impact of pumas on invertebrate communities. We collected 24,209 beetles representing 215 species. We identified eight beetle families that had significantly higher abundance at carcasses than control sites. Carcasses had a statistically large to very large effect (determined using Cohen's d) on beetle abundance, richness, and diversity for the initial 8 weeks of sampling. Our research revealed strong effects of an ecosystem engineer on beetle assemblages while highlighting the potential role of apex predators in creating and modifying physical habitats for carrion-dependent species. This suggests that there may be consequences for invertebrate communities where apex predators exist at reduced numbers or have been eradicated. The ecological role of invertebrates is often overlooked, yet they are essential taxa that provide critical ecological services upon which we depend.


Assuntos
Besouros , Puma , Animais , Biodiversidade , Ecologia , Ecossistema
3.
New Phytol ; 219(2): 794-807, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29749630

RESUMO

Functional traits in closely related lineages are expected to vary similarly along common environmental gradients as a result of shared evolutionary and biogeographic history, or legacy effects, and as a result of biophysical tradeoffs in construction. We test these predictions in Pelargonium, a relatively recent evolutionary radiation. Bayesian phylogenetic mixed effects models assessed, at the subclade level, associations between plant height, leaf area, leaf nitrogen content and leaf mass per area (LMA), and five environmental variables capturing temperature and rainfall gradients across the Greater Cape Floristic Region of South Africa. Trait-trait integration was assessed via pairwise correlations within subclades. Of 20 trait-environment associations, 17 differed among subclades. Signs of regression coefficients diverged for height, leaf area and leaf nitrogen content, but not for LMA. Subclades also differed in trait-trait relationships and these differences were modulated by rainfall seasonality. Leave-one-out cross-validation revealed that whether trait variation was better predicted by environmental predictors or trait-trait integration depended on the clade and trait in question. Legacy signals in trait-environment and trait-trait relationships were apparently lost during the earliest diversification of Pelargonium, but then retained during subsequent subclade evolution. Overall, we demonstrate that global-scale patterns are poor predictors of patterns of trait variation at finer geographic and taxonomic scales.


Assuntos
Evolução Biológica , Meio Ambiente , Geraniaceae/fisiologia , Clima , Modelos Lineares , Filogenia , Característica Quantitativa Herdável
4.
Conserv Biol ; 31(1): 116-125, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27029518

RESUMO

Population viability analysis (PVA) is widely used to assess population-level impacts of environmental changes on species. When combined with sensitivity analysis, PVA yields insights into the effects of parameter and model structure uncertainty. This helps researchers prioritize efforts for further data collection so that model improvements are efficient and helps managers prioritize conservation and management actions. Usually, sensitivity is analyzed by varying one input parameter at a time and observing the influence that variation has over model outcomes. This approach does not account for interactions among parameters. Global sensitivity analysis (GSA) overcomes this limitation by varying several model inputs simultaneously. Then, regression techniques allow measuring the importance of input-parameter uncertainties. In many conservation applications, the goal of demographic modeling is to assess how different scenarios of impact or management cause changes in a population. This is challenging because the uncertainty of input-parameter values can be confounded with the effect of impacts and management actions. We developed a GSA method that separates model outcome uncertainty resulting from parameter uncertainty from that resulting from projected ecological impacts or simulated management actions, effectively separating the 2 main questions that sensitivity analysis asks. We applied this method to assess the effects of predicted sea-level rise on Snowy Plover (Charadrius nivosus). A relatively small number of replicate models (approximately 100) resulted in consistent measures of variable importance when not trying to separate the effects of ecological impacts from parameter uncertainty. However, many more replicate models (approximately 500) were required to separate these effects. These differences are important to consider when using demographic models to estimate ecological impacts of management actions.


Assuntos
Conservação dos Recursos Naturais , Modelos Biológicos , Incerteza , Demografia , Ecossistema
5.
Proc Biol Sci ; 280(1750): 20121890, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23075836

RESUMO

Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.


Assuntos
Mudança Climática , Extinção Biológica , Biota , Geografia , Temperatura Alta
6.
Glob Chang Biol ; 19(10): 3224-37, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23907833

RESUMO

Evidence is accumulating that species' responses to climate changes are best predicted by modelling the interaction of physiological limits, biotic processes and the effects of dispersal-limitation. Using commercially harvested blacklip (Haliotis rubra) and greenlip abalone (Haliotis laevigata) as case studies, we determine the relative importance of accounting for interactions among physiology, metapopulation dynamics and exploitation in predictions of range (geographical occupancy) and abundance (spatially explicit density) under various climate change scenarios. Traditional correlative ecological niche models (ENM) predict that climate change will benefit the commercial exploitation of abalone by promoting increased abundances without any reduction in range size. However, models that account simultaneously for demographic processes and physiological responses to climate-related factors result in future (and present) estimates of area of occupancy (AOO) and abundance that differ from those generated by ENMs alone. Range expansion and population growth are unlikely for blacklip abalone because of important interactions between climate-dependent mortality and metapopulation processes; in contrast, greenlip abalone should increase in abundance despite a contraction in AOO. The strongly non-linear relationship between abalone population size and AOO has important ramifications for the use of ENM predictions that rely on metrics describing change in habitat area as proxies for extinction risk. These results show that predicting species' responses to climate change often require physiological information to understand climatic range determinants, and a metapopulation model that can make full use of this data to more realistically account for processes such as local extirpation, demographic rescue, source-sink dynamics and dispersal-limitation.


Assuntos
Mudança Climática , Gastrópodes/fisiologia , Modelos Teóricos , Animais , Austrália , Densidade Demográfica , Dinâmica Populacional
7.
Ecol Evol ; 3(1): 182-96, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23404636

RESUMO

Species introductions of anthropogenic origins are a major aspect of rapid ecological change globally. Research on biological invasions has generated a large literature on many different aspects of this phenomenon. Here, we describe and categorize some aspects of this literature, to better understand what has been studied and what we know, mapping well-studied areas and important gaps. To do so, we employ the techniques of systematic reviewing widely adopted in other scientific disciplines, to further the use of approaches in reviewing the literature that are as scientific, repeatable, and transparent as those employed in a primary study. We identified 2398 relevant studies in a field synopsis of the biological invasions literature. A majority of these studies (58%) were concerned with hypotheses for causes of biological invasions, while studies on impacts of invasions were the next most common (32% of the publications). We examined 1537 papers in greater detail in a systematic review. Superior competitive abilities of invaders, environmental disturbance, and invaded community species richness were the most common hypotheses examined. Most studies examined only a single hypothesis. Almost half of the papers were field observational studies. Studies of terrestrial invasions dominate the literature, with most of these concerning plant invasions. The focus of the literature overall is uneven, with important gaps in areas of theoretical and practical importance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa