Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(3): 1973-1983, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33434016

RESUMO

Algal bloom microalgae are abundant in polluted water systems, but their biocrude oil production potential via hydrothermal liquefaction (HTL) is limited. This study proposed a novel process that combined biological (dark fermentation) and thermochemical (HTL) techniques aimed at changing the feedstock characteristics to be more suitable for thermochemical conversion, herein named integrated dark fermentation-hydrothermal liquefaction (DF-HTL). DF-HTL conversion of algae significantly enhanced the biocrude oil yield (wt %), carbon content (mol), energy content (MJ), and energy conversion ratios by 9.8, 29.7, 40.0, and 61.0%, respectively, in comparison to the control. Furthermore, DF-HTL processing significantly decreased the aqueous byproduct yield (wt %), carbon content (mol), nitrogen content (mol), and ammonia content (mol) by 19.0, 38.4, 25.0, and 13.2%, respectively, in comparison to the control. Therefore, DF-HTL reduced the environmental impact associated with disposing of the wastewater byproduct. However, DF-HTL also augmented the nitrogen content (mol) of the biocrude oil by 42.2% in comparison to the control. The benefits of DF-HTL were attributed to the increased acid content, the incorporation of H2 as a processing gas, and the enhancement of the Maillard reaction, which shifted the distribution of reaction products from the aqueous phase to the biocrude oil phase. This article provides insights into the efficacy of a novel integrated biological-thermochemical processing method with distinct environmental and energetic advantages over conventional HTL that heightens the biocrude oil yield for feedstocks with a high carbohydrate and a high protein content.


Assuntos
Microalgas , Biocombustíveis/análise , Biomassa , Eutrofização , Temperatura , Águas Residuárias , Água
2.
Curr Opin Environ Sci Health ; 14: 63-73, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32296739

RESUMO

The US annually produces 79 million dry tons of liquid organic waste including sewage sludge. Anaerobic digestion can only reduce the sludge volume by 50% in mass, leaving the other half as a growing waste management and hygienic problem. Hydrothermal processing (HTP), a set of several chemical digestion processes, could be used to convert sewage sludge into valuable products and minimize potential environmental pollution risks. Specifically, hydrothermal carbonization and hydrothermal liquefaction have been extensively studied to sustainably manage sludge. Two of the main reasons for this are the high upscalability of HTP for public waste management and that it is estimated that HTP can recover eleven times more energy from waste products than landfilling. An integration of HTP with anaerobic digestion or recycling the soluble organics (in the HTP aqueous products) into the HTP process could lead to a higher overall rate of energy recovery for municipal sewage sludge.

3.
Bioresour Technol ; 279: 57-66, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30711753

RESUMO

Hydrothermal pretreatment (HTP) using an acidic catalyst is known to be effective for reducing lignocellulosic biomass recalcitrance. Post-hydrothermal liquefaction wastewater (PHW) from hydrothermal liquefaction of swine manure contains a large fraction of organic acids and thus was introduced to improve the HTP of cornstalk in this study. The response surface methodology was performed to optimize operating parameters of HTP for preserving structural polysaccharides while removing the barrier substances. A remarkable co-extraction of cell wall polymers was observed during PHW-catalyzed HTP at 172 °C for 88 min. The analysis of particle size, crystalline cellulose, the degree of polymerization (DP), mole number (MN) and SEM suggested that the co-extraction effect could distinctively alter lignocellulosic structures associated with recalcitrance and thus accelerate biomass saccharification. Additionally, the biodegradability of PHW was improved after HTP as a result of balanced nutrients and increased acids and sugars suitable for biogas production via anaerobic fermentation.


Assuntos
Biomassa , Águas Residuárias/química , Zea mays/química , Animais , Biocombustíveis , Celulose/química , Fermentação , Polissacarídeos/química , Polissacarídeos/metabolismo , Suínos
4.
Bioresour Technol ; 274: 335-342, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30529481

RESUMO

Developing efficient methods to recover energy from post-hydrothermal liquefaction wastewater (PHW) is critical for scaling up hydrothermal liquefaction (HTL) technology. Here we evaluated two-stage fermentation (TF) and catalytic hydrothermal gasification (CHG) for biohythane production using PHW. A hydrogen yield of 29 mL·g-1 COD and methane yield of 254 mL·g-1 COD were achieved via TF. In comparison, a higher hydrogen yield (116 mL·g-1 COD) and lower methane yield (65 mL·g-1 COD) were achieved during CHG. Further, a techno-economic and sensitivity analysis was conducted. The capital cost and operating cost for TF varied with the different reactor systems. TF with high-rate reactors suggested its promising commercialized application as it had a lower minimum selling price (-0.71 to 2.59 USD per gallon of gasoline equivalent) compared with conventional fossil fuels under both the best and reference market conditions. Compared with TF, CHG was only likely to be profitable under the best case conditions.


Assuntos
Biocombustíveis , Fermentação , Biocatálise , Biocombustíveis/economia , Hidrogênio/metabolismo , Metano/biossíntese , Temperatura , Águas Residuárias
5.
Bioresour Technol ; 284: 139-147, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30927651

RESUMO

Excessive food waste presents an opportunity to simultaneously alleviate waste and produce renewable resources. The present work uses hydrothermal liquefaction (HTL) with elevated temperatures (280-380 °C) and times (10-60 min) to convert categorized food residues collected from a university campus dining hall into biocrude oil. Analysis of distinct feedstocks presented different biochemical compositions (protein, carbohydrate, and lipid) and yielded between 2 and 79% biocrude oil for the respective optimized HTL temperatures and times. Reaction pathways and elemental distributions (C,H,N) elucidated HTL product qualities based on feedstocks and optimized reaction conditions. Both descriptive HTL process energy recoveries and consumption ratios are included. An improved predictive model was able to accurately determine biocrude oil yield (R2adj 98.3%) of different food wastes under different reaction conditions, as well as predict previously published data (R2 94.3%). Combined experimental and analytical results were used to assess the sustainability and robustness of the HTL process.


Assuntos
Alimentos , Fenômenos Bioquímicos , Biocombustíveis , Temperatura Alta , Eliminação de Resíduos/métodos , Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa