Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(24): 26205-26212, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38911774

RESUMO

In this report, 38 nm-thick amorphous zinc-tin oxide (a-ZTO) films were deposited by radio frequency magnetron cosputtering. a-ZTO films were annealed by in situ monitoring of the sheet resistance improvements during the annealing process. A sharp drop in the slope of the sheet resistance curve was observed. The activation energies for the sheet resistance slope were calculated. The activation energy of the reaction for a sharp drop in the slope is much higher than the activation energy for the rest of the slope. Based on the activation energy values, six annealing temperatures were selected to saturate the highest conductivity at lower annealing temperatures and to identify the effects associated with annealing time. We found a direct correlation between annealing temperatures and the duration of the annealing treatment. a-ZTO films with a high conductivity of 320 S/cm were achieved by annealing at a temperature of 220 °C. It is noteworthy that the annealing temperature of 220 °C has clearly replaced the temperature of 300 °C. An irreversible decrease in resistivity was observed for all films. The conduction mechanism of films before and after annealing was determined. We confirm that all films individually exhibit semiconducting and metallic behaviors in the conduction mechanism before and after the lowest resistivity saturation.

2.
Sci Rep ; 14(1): 1928, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253799

RESUMO

High-quality epitaxial p-type V2O3 thin films have been synthesized by spray pyrolysis. The films exhibited excellent electrical performance, with measurable mobility and high carrier concentration. The conductivity of the films varied between 115 and 1079 Scm-1 while the optical transparency of the films ranged from 32 to 65% in the visible region. The observed limitations in thinner films' mobility were attributed to the nanosized granular structure and the presence of two preferred growth orientations. The 60 nm thick V2O3 film demonstrated a highly competitive transparency-conductivity figure of merit compared to the state-of-the-art.

3.
Sci Rep ; 10(1): 7463, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366858

RESUMO

Titanium (Ti)-doped hematite (α-Fe2O3) films were grown in oxygen-depleted condition by using the spray pyrolysis technique. The impact of post-deposition annealing in oxygen-rich condition on both the conductivity and water splitting efficiency was investigated. The X-ray diffraction pattern revealed that the films are of rhombohedral α-Fe2O3 structure and dominantly directed along (012). The as-grown films were found to be highly conductive with electrons as the majority charge carriers (n-type), a carrier concentration of 1.09×1020 cm-3, and a resistivity of 5.9×10-2 Ω-cm. The conductivity of the films were reduced upon post-deposition annealing. The origin of the conductivity was attributed firstly to Ti4+ substituting Fe3+ and secondly to the ionized oxygen vacancies (VO) in the crystal lattice of hematite. Upon annealing the samples in oxygen-rich condition, VO slowly depleted and the conductivity reduced. The photocurrent of the as-grown samples was found to be 3.4 mA/cm-2 at 1.23 V vs. RHE. The solar-to-hydrogen efficiency for the as-grown sample was calculated to be 4.18% at 1.23 V vs. RHE. The photocurrents were found to be significantly stable in aqueous environment. A linear relationship between conductivity and water-splitting efficiency was established.

4.
Materials (Basel) ; 13(2)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936137

RESUMO

The electronic and optical properties of transparent conducting oxides (TCOs) are closely linked to their crystallographic structure on a macroscopic (grain sizes) and microscopic (bond structure) level. With the increasing drive towards using reduced film thicknesses in devices and growing interest in amorphous TCOs such as n-type InGaZnO 4 (IGZO), ZnSnO 3 (ZTO), p-type Cu x CrO 2 , or ZnRh 2 O 4 , the task of gaining in-depth knowledge on their crystal structure by conventional X-ray diffraction-based measurements are becoming increasingly difficult. We demonstrate the use of a focal shift based background subtraction technique for Raman spectroscopy specifically developed for the case of transparent thin films on amorphous substrates. Using this technique we demonstrate, for a variety of TCOs CuO, a-ZTO, ZnO:Al), how changes in local vibrational modes reflect changes in the composition of the TCO and consequently their electronic properties.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa