Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Transfusion ; 63(1): 23-29, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36268708

RESUMO

BACKGROUND: It is important to maintain the safety of blood products by avoiding the transfusion of units with known and novel viral pathogens. It is unknown whether COVID-19 convalescent plasma (CCP) may contain pathogenic viruses (either newly acquired or reactivated) that are not routinely screened for by blood centers. METHODS: The DNA virome was characterized in potential CCP donors (n = 30) using viral genome specific PCR primers to identify DNA plasma virome members of the Herpesviridae [Epstein Barr Virus (EBV), cytomegalovirus (CMV), human herpesvirus 6A/B, human herpesvirus 7] and Anelloviridae [Torque teno viruses (TTV), Torque teno mini viruses (TTMV), and Torque teno midi viruses (TTMDV)] families. In addition, the RNA plasma virome was characterized using unbiased metagenomic sequencing. Sequencing was done on a HiSeq2500 using high output mode with a read length of 2X100 bp. The sequencing reads were taxonomically classified using Kraken2. CMV and EBV seroprevalence were evaluated using a chemiluminescent immunoassay. RESULTS: TTV and TTMDV were detected in 12 (40%) and 4 (13%) of the 30 study participants, respectively; TTMDV was always associated with infection with TTV. We did not observe TTMV DNAemia. Despite CMV and EBV seroprevalences of 33.3% and 93.3%, respectively, we did not detect Herpesviridae DNA among the study participants. Metagenomic sequencing did not reveal any human RNA viruses in CCP, including no evidence of circulating SARS-CoV-2. DISCUSSION: There was no evidence of pathogenic viruses, whether newly acquired or reactivated, in CCP despite the presence of non-pathogenic Anelloviridae. These results confirm the growing safety data supporting CCP.


Assuntos
Anelloviridae , COVID-19 , Infecções por Citomegalovirus , Infecções por Vírus de DNA , Infecções por Vírus Epstein-Barr , Torque teno virus , Humanos , Estudos Soroepidemiológicos , Herpesvirus Humano 4/genética , COVID-19/terapia , Soroterapia para COVID-19 , SARS-CoV-2/genética , Anelloviridae/genética , Torque teno virus/genética , Citomegalovirus/genética , DNA , DNA Viral/genética
2.
BMC Immunol ; 23(1): 7, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35172720

RESUMO

BACKGROUND: While antibodies can provide significant protection from SARS-CoV-2 infection and disease sequelae, the specific attributes of the humoral response that contribute to immunity are incompletely defined. METHODS: We employ machine learning to relate characteristics of the polyclonal antibody response raised by natural infection to diverse antibody effector functions and neutralization potency with the goal of generating both accurate predictions of each activity based on antibody response profiles as well as insights into antibody mechanisms of action. RESULTS: To this end, antibody-mediated phagocytosis, cytotoxicity, complement deposition, and neutralization were accurately predicted from biophysical antibody profiles in both discovery and validation cohorts. These models identified SARS-CoV-2-specific IgM as a key predictor of neutralization activity whose mechanistic relevance was supported experimentally by depletion. CONCLUSIONS: Validated models of how different aspects of the humoral response relate to antiviral antibody activities suggest desirable attributes to recapitulate by vaccination or other antibody-based interventions.

3.
medRxiv ; 2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34401890

RESUMO

While antibodies provide significant protection from SARS-CoV-2 infection and disease sequelae, the specific attributes of the humoral response that contribute to immunity are incompletely defined. In this study, we employ machine learning to relate characteristics of the polyclonal antibody response raised by natural infection to diverse antibody effector functions and neutralization potency with the goal of generating both accurate predictions of each activity based on antibody response profiles as well as insights into antibody mechanisms of action. To this end, antibody-mediated phagocytosis, cytotoxicity, complement deposition, and neutralization were accurately predicted from biophysical antibody profiles in both discovery and validation cohorts. These predictive models identified SARS-CoV-2-specific IgM as a key predictor of neutralization activity whose mechanistic relevance was supported experimentally by depletion. Validated models of how different aspects of the humoral response relate to antiviral antibody activities suggest desirable attributes to recapitulate by vaccination or other antibody-based interventions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa