Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Microbiol ; 112(6): 1847-1862, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31562654

RESUMO

Mycobacterium tuberculosis (Mtb) is able to persist in the body through months of multi-drug therapy. Mycobacteria possess a wide range of regulatory proteins, including the protein kinase B (PknB) which controls peptidoglycan biosynthesis during growth. Here, we observed that depletion of PknB resulted in specific transcriptional changes that are likely caused by reduced phosphorylation of the H-NS-like regulator Lsr2 at threonine 112. The activity of PknB towards this phosphosite was confirmed with purified proteins, and this site was required for adaptation of Mtb to hypoxic conditions, and growth on solid media. Like H-NS, Lsr2 binds DNA in sequence-dependent and non-specific modes. PknB phosphorylation of Lsr2 reduced DNA binding, measured by fluorescence anisotropy and electrophoretic mobility shift assays, and our NMR structure of phosphomimetic T112D Lsr2 suggests that this may be due to increased dynamics of the DNA-binding domain. Conversely, the phosphoablative T112A Lsr2 had increased binding to certain DNA sites in ChIP-sequencing, and Mtb containing this variant showed transcriptional changes that correspond with the change in DNA binding. In summary, PknB controls Mtb growth and adaptations to the changing host environment by phosphorylating the global transcriptional regulator Lsr2.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mycobacterium tuberculosis/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Bactérias/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Proteínas de Ligação a DNA/fisiologia , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Regulação Bacteriana da Expressão Gênica/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/fisiologia , Treonina/metabolismo , Fatores de Transcrição/metabolismo
2.
Nature ; 515(7526): 279-282, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25119035

RESUMO

The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca(2+)-permeable non-selective cationic channels for detection of noxious mechanical impact. Here we show Piezo1 (Fam38a) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. The importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear-stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx there was protease activation and spatial reorganization of endothelial cells to the polarity of the applied force. The data suggest that Piezo1 channels function as pivotal integrators in vascular biology.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/fisiologia , Fricção , Canais Iônicos/metabolismo , Estresse Mecânico , Animais , Embrião de Mamíferos/irrigação sanguínea , Embrião de Mamíferos/metabolismo , Feminino , Hemorreologia , Masculino , Camundongos
3.
J Cell Physiol ; 232(11): 2985-2995, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28369848

RESUMO

Patients with end-stage renal disease (ESRD) have elevated circulating calcium (Ca) and phosphate (Pi), and exhibit accelerated progression of calcific aortic valve disease (CAVD). We hypothesized that matrix vesicles (MVs) initiate the calcification process in CAVD. Ca induced rat valve interstitial cells (VICs) calcification at 4.5 mM (16.4-fold; p < 0.05) whereas Pi treatment alone had no effect. Ca (2.7 mM) and Pi (2.5 mM) synergistically induced calcium deposition (10.8-fold; p < 0.001) in VICs. Ca treatment increased the mRNA of the osteogenic markers Msx2, Runx2, and Alpl (p < 0.01). MVs were harvested by ultracentrifugation from VICs cultured with control or calcification media (containing 2.7 mM Ca and 2.5 mM Pi) for 16 hr. Proteomics analysis revealed the marked enrichment of exosomal proteins, including CD9, CD63, LAMP-1, and LAMP-2 and a concomitant up-regulation of the Annexin family of calcium-binding proteins. Of particular note Annexin VI was shown to be enriched in calcifying VIC-derived MVs (51.9-fold; p < 0.05). Through bioinformatic analysis using Ingenuity Pathway Analysis (IPA), the up-regulation of canonical signaling pathways relevant to cardiovascular function were identified in calcifying VIC-derived MVs, including aldosterone, Rho kinase, and metal binding. Further studies using human calcified valve tissue revealed the co-localization of Annexin VI with areas of MVs in the extracellular matrix by transmission electron microscopy (TEM). Together these findings highlight a critical role for VIC-derived MVs in CAVD. Furthermore, we identify calcium as a key driver of aortic valve calcification, which may directly underpin the increased susceptibility of ESRD patients to accelerated development of CAVD.


Assuntos
Anexina A6/metabolismo , Estenose da Valva Aórtica/metabolismo , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/metabolismo , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Hipercalcemia/etiologia , Falência Renal Crônica/complicações , Idoso , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Valva Aórtica/ultraestrutura , Estenose da Valva Aórtica/etiologia , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Calcinose/etiologia , Calcinose/genética , Calcinose/patologia , Cálcio/metabolismo , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Matriz Extracelular/ultraestrutura , Vesículas Extracelulares/ultraestrutura , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Hipercalcemia/diagnóstico , Falência Renal Crônica/diagnóstico , Masculino , Microscopia Eletrônica de Transmissão , Mapas de Interação de Proteínas , Proteômica/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Regulação para Cima
4.
Mol Cell Proteomics ; 14(9): 2479-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26089344

RESUMO

Tyrosine kinases (TKs) are central regulators in cellular activities and perturbations of TK signaling contribute to oncogenesis. However, less than half of the TKs have been thoroughly studied and a global functional analysis of their proteomic portrait is lacking. Here we conducted a combined approach of RNA interference (RNAi) and stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics to decode the TK-regulated proteome and associated signaling dynamics. As a result, a broad proteomic repertoire modulated by TKs was revealed, upon silencing of the 65 TKs expressed in MCF7 breast cancer cells. This yielded 10 new distinctive TK clusters according to similarity in TK-regulated proteome, each characterized by a unique signaling signature in contrast to previous classifications. We provide functional analyses and identify critical pathways for each cluster based on their common downstream targets. Analysis of different breast cancer subtypes showed distinct correlations of each cluster with clinical outcome. From the significantly up- and down-regulated proteins, we identified a number of markers of drug sensitivity and resistance. These data supports the role of TKs in regulating major aspects of cellular activity, but also reveals redundancy in signaling, explaining why kinase inhibitors alone often fail to achieve their clinical aims. The TK-SILACepedia provides a comprehensive resource for studying the global function of TKs in cancer.


Assuntos
Neoplasias da Mama/metabolismo , Marcação por Isótopo/métodos , Proteínas Tirosina Quinases/metabolismo , Proteoma/análise , Proteômica/métodos , Interferência de RNA , Aminoácidos/química , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Transdução de Sinais
5.
J Proteome Res ; 12(4): 1580-90, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23413775

RESUMO

Zebrafish is an important model organism in biological research. One of the least explored tissues of zebrafish is blood, because the existing methods for isolating blood from this organism are tedious and irreproducible. The small volume of blood collected by these methods also prohibits many biochemical and cytological analyses. This technical obstacle limits the utilization of zebrafish in many applications, particularly in hematological research and plasma biomarker discovery. To overcome this limitation, we have established a novel method of extracting blood from zebrafish, based on the use of low centrifugal force to collect blood from a wound. This method consistently recovers more blood than traditional methods. Gel electrophoresis and flow cytometry showed that composition of blood harvested by this method is indistinguishable from traditional methods. The increase in yield enables us to perform biochemical experiments on zebrafish blood. In particular, we have demonstrated that quantitative proteomics can be performed on plasma collected from single zebrafish. Here, we have compared, by using shotgun proteomic analysis, the plasma proteomes of adult male and female zebrafish. Twenty-seven gender-dependent plasma proteins are identified and their biochemical importance discussed. Taken together, this novel technique enables analyses that were previously difficult to perform on zebrafish blood.


Assuntos
Proteínas Sanguíneas/análise , Coleta de Amostras Sanguíneas/métodos , Proteínas de Peixe-Zebra/sangue , Peixe-Zebra/sangue , Animais , Feminino , Masculino , Proteômica/métodos , Reprodutibilidade dos Testes , Fatores Sexuais , Espectrometria de Massas em Tandem
6.
Nanomedicine ; 9(5): 583-93, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23117048

RESUMO

The protein corona of a nanomaterial is a complex layer of proteins spontaneously and stably formed when the material is exposed to body fluids or intracellular environments. In this study, we utilised stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics to characterise the binding of human cellular proteins to two forms of carbon nanoparticles: namely multi-walled carbon nanotubes (MWCNTs) and carbon black (CB). The relative binding efficiency of over 750 proteins to these materials is measured. The data indicate that MWCNTs and CB bind to vastly different sets of proteins. The molecular basis of selectivity in protein binding is investigated. This study is the first large-scale characterisation of protein corona on CNT, providing the biochemical basis for the assessment of the suitability of CNTs as biomedical tools, and as an emerging pollutant. FROM THE CLINICAL EDITOR: This team of investigators performed the first large-scale characterization of protein corona on carbon nanotubes, studying 750 proteins and assessing the suitability of CNTs as biomedical tools and as an emerging pollutant.


Assuntos
Aminoácidos/química , Carbono/química , Nanotubos de Carbono/química , Proteínas/química , Linhagem Celular , Humanos , Marcação por Isótopo , Nanopartículas/química , Ligação Proteica , Proteômica , Fuligem/química
7.
Proteomics ; 12(9): 1431-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22585751

RESUMO

Influenza A virus is one of the world's major uncontrolled pathogens, causing seasonal epidemics as well as global pandemics. This was evidenced by the recent emergence and now prevalence of the 2009 swine origin pandemic H1N1 influenza A virus. In this study, quantitative proteomics using stable isotope labelling with amino acids in cell culture was used to investigate the changes in the host cell proteome in cells infected with pandemic H1N1 influenza A virus. The study was conducted in A549 cells that retain properties similar to alveolar cells. Several global pathways were affected, including cell cycle regulation and lipid metabolism, and these could be correlated with recent microarray analyses of cells infected with influenza A virus. Taken together, both quantitative proteomics and transcriptomic approaches can be used to identify potential cellular proteins whose functions in the virus life cycle could be targeted for chemotherapeutic intervention.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana/metabolismo , Pulmão/metabolismo , Pulmão/virologia , Proteoma/análise , Western Blotting , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Humanos , Influenza Humana/patologia , Influenza Humana/virologia , Marcação por Isótopo , Pulmão/patologia , Proteoma/química , Proteômica/métodos , Reprodutibilidade dos Testes
8.
EMBO Rep ; 11(6): 445-51, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20467437

RESUMO

Heterogeneous nuclear ribonucleoprotein-M (hnRNP-M) is an abundant nuclear protein that binds to pre-mRNA and is a component of the spliceosome complex. A direct interaction was detected in vivo between hnRNP-M and the human spliceosome proteins cell division cycle 5-like (CDC5L) and pleiotropic regulator 1 (PLRG1) that was inhibited during the heat-shock stress response. A central region in hnRNP-M is required for interaction with CDC5L/PLRG1. hnRNP-M affects both 5' and 3' alternative splice site choices, and an hnRNP-M mutant lacking the CDC5L/PLRG1 interaction domain is unable to modulate alternative splicing of an adeno-E1A mini-gene substrate.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Sítios de Splice de RNA , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Fluorescência Verde , Células HeLa , Resposta ao Choque Térmico , Ribonucleoproteínas Nucleares Heterogêneas Grupo M/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas Nucleares/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/química , Proteínas Recombinantes de Fusão
9.
Mol Cell Proteomics ; 9(9): 1920-36, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20467043

RESUMO

Virus-host interactions involve complex interplay between viral and host factors, rendering them an ideal target for proteomic analysis. Here we detail a high throughput quantitative proteomics analysis of Vero cells infected with the coronavirus infectious bronchitis virus (IBV), a positive strand RNA virus that replicates in the cytoplasm. Stable isotope labeling with amino acids in cell culture (SILAC) was used in conjunction with LC-MS/MS to identify and quantify 1830 cellular and two viral proteins from IBV-infected cells. Fractionation of cells into cytoplasmic, nuclear, and nucleolar extracts was used to reduce sample complexity and provide information on the trafficking of proteins between the different compartments. Each fraction showed a proportion of proteins exhibiting >or=2-fold changes in abundance. Ingenuity Pathway Analysis revealed that proteins that changed in response to infection could be grouped into different functional categories. These included proteins regulated by NF-kappaB- and AP-1-dependent pathways and proteins involved in the cytoskeleton and molecular motors. A luciferase-based reporter gene assay was used to validate the up-regulation of AP-1- and NF-kappaB-dependent transcription in IBV-infected cells and confirmed using immunofluorescence. Immunofluorescence was used to validate changes in the subcellular localization of vimentin and myosin VI in IBV-infected cells. The proteomics analysis also confirmed the presence of the viral nucleocapsid protein as localizing in the cytoplasm, nucleus, and nucleolus and the viral membrane protein in the cytoplasmic fraction. This research is the first application of SILAC to study total host cell proteome changes in response to positive sense RNA virus infection and illustrates the versatility of this technique as applied to infectious disease research.


Assuntos
Nucléolo Celular/química , Núcleo Celular/química , Citoplasma/química , Vírus da Bronquite Infecciosa/patogenicidade , Marcação por Isótopo/métodos , Proteômica , Proteínas Virais/química , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Microscopia Confocal , Dados de Sequência Molecular , Espectrometria de Massas em Tandem/métodos , Células Vero
10.
Biochem J ; 438(1): 81-91, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21639856

RESUMO

The Cdc5L (cell division cycle 5-like) complex is a spliceosomal subcomplex that also plays a role in DNA repair. The complex contains the splicing factor hPrp19, also known as SNEV or hPso4, which is involved in cellular life-span regulation and proteasomal breakdown. In a recent large-scale proteomics analysis for proteins associated with this complex, proteins involved in transcription, cell-cycle regulation, DNA repair, the ubiquitin-proteasome system, chromatin remodelling, cellular aging, the cytoskeleton and trafficking, including four members of the exocyst complex, were identified. In the present paper we report that Exo70 interacts directly with SNEV(hPrp19/hPso4) and shuttles to the nucleus, where it associates with the spliceosome. We mapped the interaction site to the N-terminal 100 amino acids of Exo70, which interfere with pre-mRNA splicing in vitro. Furthermore, Exo70 influences the splicing of a model substrate as well as of its own pre-mRNA in vivo. In addition, we found that Exo70 is alternatively spliced in a cell-type- and cell-age- dependent way. These results suggest a novel and unexpected role of Exo70 in nuclear mRNA splicing, where it might signal membrane events to the splicing apparatus.


Assuntos
Processamento Alternativo , Núcleo Celular/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas Nucleares/metabolismo , Precursores de RNA/genética , Spliceossomos/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Western Blotting , Núcleo Celular/metabolismo , Enzimas Reparadoras do DNA/genética , Imunofluorescência , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Ligação Proteica , Fatores de Processamento de RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas do Sistema de Duplo-Híbrido
11.
Oncogene ; 41(18): 2540-2554, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35301407

RESUMO

Low-risk gestational trophoblastic neoplasia including choriocarcinoma is often effectively treated with Methotrexate (MTX) as a first line therapy. However, MTX resistance (MTX-R) occurs in at least ≈33% of cases. This can sometimes be salvaged with actinomycin-D but often requires more toxic combination chemotherapy. Moreover, additional therapy may be needed and, for high-risk patients, 5% still die from the multidrug-resistant disease. Consequently, new treatments that are less toxic and could reverse MTX-R are needed. Here, we compared the proteome/phosphoproteome of MTX-resistant and sensitive choriocarcinoma cells using quantitative mass-spectrometry to identify therapeutically actionable molecular changes associated with MTX-R. Bioinformatics analysis of the proteomic data identified cell cycle and DNA damage repair as major pathways associated with MTX-R. MTX-R choriocarcinoma cells undergo cell cycle delay in G1 phase that enables them to repair DNA damage more efficiently through non-homologous end joining in an ATR-dependent manner. Increased expression of cyclin-dependent kinase 4 (CDK4) and loss of p16Ink4a in resistant cells suggested that CDK4 inhibition may be a strategy to treat MTX-R choriocarcinoma. Indeed, inhibition of CDK4/6 using genetic silencing or the clinically relevant inhibitor, Palbociclib, induced growth inhibition both in vitro and in an orthotopic in vivo mouse model. Finally, targeting the ATR pathway, genetically or pharmacologically, re-sensitised resistant cells to MTX in vitro and potently prevented the growth of MTX-R tumours in vivo. In short, we identified two novel therapeutic strategies to tackle MTX-R choriocarcinoma that could rapidly be translated into the clinic.


Assuntos
Coriocarcinoma , Quinase 6 Dependente de Ciclina/metabolismo , Metotrexato , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Coriocarcinoma/tratamento farmacológico , Coriocarcinoma/genética , Coriocarcinoma/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Dactinomicina , Feminino , Humanos , Metotrexato/farmacologia , Camundongos , Gravidez , Proteômica
12.
J Biol Chem ; 284(42): 29193-204, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19641227

RESUMO

The removal of introns from pre-mRNA is performed by the spliceosome that stepwise assembles on the pre-mRNA before performing two catalytic steps. The spliceosome-associated CDC5L-SNEV(Prp19-Pso4) complex is implicated in activation of the second catalytic step of pre-mRNA splicing, and one of its members, SNEV(Prp19-Pso4), is also implicated in spliceosome assembly. To identify interaction partners of SNEVPrp19-Pso4, we have performed yeast two-hybrid screenings. Among the putative binding partners was a so far uncharacterized protein carrying two heterogeneous nuclear ribonucleoprotein K homology domains that we termed Blom7alpha. Blom7alpha is expressed in all tissues tested, and at least three splice variants exist. After confirming direct and physical interaction of SNEV and Blom7alpha, we investigated if it plays a functional role during pre-mRNA splicing. Indeed, Blom7alpha co-localizes and co-precipitates with splicing factors and pre-mRNA and is present in affinity-purified spliceosomes. More importantly, addition of Blom7alpha to HeLa nuclear extracts increased splicing activity in a dose-dependent manner. Furthermore, we tested if Blom7alpha influences splice site selection using two different minigene constructs. Indeed, both 5'- as well as 3'-site selection was altered upon Blom7alpha overexpression. Thus we suggest that Blom7alpha is a novel splicing factor of the K homology domain family that might be implicated in alternative splicing by helping to position the CDC5L-SNEV(Prp19-Pso4) complex at the splice sites.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo K/química , Ribonucleoproteínas Nucleares Heterogêneas/química , Processamento Alternativo , Animais , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Escherichia coli/genética , Células HeLa , Humanos , Íntrons , Ligação Proteica , Estrutura Terciária de Proteína , Precursores de RNA/metabolismo , Saccharomyces cerevisiae/genética , Técnicas do Sistema de Duplo-Híbrido
13.
Cell Commun Signal ; 8: 28, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20920157

RESUMO

Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal diseases associated with the conversion of the cellular prion protein (PrPC) to the abnormal prion protein (PrPSc). Since the molecular mechanisms in pathogenesis are widely unclear, we analyzed the global phospho-proteome and detected a differential pattern of tyrosine- and threonine phosphorylated proteins in PrPSc-replicating and pentosan polysulfate (PPS)-rescued N2a cells in two-dimensional gel electrophoresis. To quantify phosphorylated proteins, we performed a SILAC (stable isotope labeling by amino acids in cell culture) analysis and identified 105 proteins, which showed a regulated phosphorylation upon PrPSc infection. Among those proteins, we validated the dephosphorylation of stathmin and Cdc2 and the induced phosphorylation of cofilin in PrPSc-infected N2a cells in Western blot analyses. Our analysis showed for the first time a differentially regulated phospho-proteome in PrPSc infection, which could contribute to the establishment of novel protein markers and to the development of novel therapeutic intervention strategies in targeting prion-associated disease.

14.
Sci Rep ; 9(1): 8337, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171861

RESUMO

Protein phosphatase PstP is conserved throughout the Actinobacteria in a genetic locus related to cell wall synthesis and cell division. In many Actinobacteria it is the sole annotated serine threonine protein phosphatase to counter the activity of multiple serine threonine protein kinases. We used transcriptional knockdown, electron microscopy and comparative phosphoproteomics to investigate the putative dual functions of PstP as a specific regulator of cell division and as a global regulator of protein phosphorylation. Comparative phosphoproteomics in the early stages of PstP depletion showed hyperphosphorylation of protein kinases and their substrates, confirming PstP as a negative regulator of kinase activity and global serine and threonine phosphorylation. Analysis of the 838 phosphorylation sites that changed significantly, suggested that PstP may regulate diverse phosphoproteins, preferentially at phosphothreonine near acidic residues, near the protein termini, and within membrane associated proteins. Increased phosphorylation of the activation loop of protein kinase B (PknB) and of the essential PknB substrate CwlM offer possible explanations for the requirement for pstP for growth and for cell wall defects when PstP was depleted.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium smegmatis/enzimologia , Fosfoproteínas/metabolismo , Parede Celular/metabolismo , Simulação por Computador , Microscopia Eletrônica , Família Multigênica , Mutação , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Fosforilação , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica
15.
Cell Rep ; 25(1): 57-67.e5, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30282038

RESUMO

Tuberculosis claims >1 million lives annually, and its causative agent Mycobacterium tuberculosis is a highly successful pathogen. Protein kinase B (PknB) is reported to be critical for mycobacterial growth. Here, we demonstrate that PknB-depleted M. tuberculosis can replicate normally and can synthesize peptidoglycan in an osmoprotective medium. Comparative phosphoproteomics of PknB-producing and PknB-depleted mycobacteria identify CwlM, an essential regulator of peptidoglycan synthesis, as a major PknB substrate. Our complementation studies of a cwlM mutant of M. tuberculosis support CwlM phosphorylation as a likely molecular basis for PknB being essential for mycobacterial growth. We demonstrate that growing mycobacteria produce two forms of CwlM: a non-phosphorylated membrane-associated form and a PknB-phosphorylated cytoplasmic form. Furthermore, we show that the partner proteins for the phosphorylated and non-phosphorylated forms of CwlM are FhaA, a fork head-associated domain protein, and MurJ, a proposed lipid II flippase, respectively. From our results, we propose a model in which CwlM potentially regulates both the biosynthesis of peptidoglycan precursors and their transport across the cytoplasmic membrane.


Assuntos
Mycobacterium tuberculosis/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sequência de Aminoácidos , Parede Celular/enzimologia , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fosforilação , Proteínas Proto-Oncogênicas c-akt/deficiência
16.
Nucleic Acids Res ; 33(21): 6868-83, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16332694

RESUMO

We have isolated the human protein SNEV as downregulated in replicatively senescent cells. Sequence homology to the yeast splicing factor Prp19 suggested that SNEV might be the orthologue of Prp19 and therefore might also be involved in pre-mRNA splicing. We have used various approaches including gene complementation studies in yeast using a temperature sensitive mutant with a pleiotropic phenotype and SNEV immunodepletion from human HeLa nuclear extracts to determine its function. A human-yeast chimera was indeed capable of restoring the wild-type phenotype of the yeast mutant strain. In addition, immunodepletion of SNEV from human nuclear extracts resulted in a decrease of in vitro pre-mRNA splicing efficiency. Furthermore, as part of our analysis of protein-protein interactions within the CDC5L complex, we found that SNEV interacts with itself. The self-interaction domain was mapped to amino acids 56-74 in the protein's sequence and synthetic peptides derived from this region inhibit in vitro splicing by surprisingly interfering with spliceosome formation and stability. These results indicate that SNEV is the human orthologue of yeast PRP19, functions in splicing and that homo-oligomerization of SNEV in HeLa nuclear extract is essential for spliceosome assembly and that it might also be important for spliceosome stability.


Assuntos
Splicing de RNA , Spliceossomos/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Sequência de Aminoácidos , Núcleo Celular/química , Sequência Conservada , Enzimas Reparadoras do DNA , Evolução Molecular , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares , Peptídeos/farmacologia , Fenótipo , Estrutura Terciária de Proteína , Precursores de RNA/metabolismo , Splicing de RNA/efeitos dos fármacos , Fatores de Processamento de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/análise , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Spliceossomos/efeitos dos fármacos , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
18.
Biochem J ; 388(Pt 2): 593-603, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15660529

RESUMO

Recognition of specific substrates for degradation by the ubiquitin-proteasome pathway is ensured by a cascade of ubiquitin transferases E1, E2 and E3. The mechanism by which the target proteins are transported to the proteasome is not clear, but two yeast E3s and one mammalian E3 ligase seem to be involved in the delivery of targets to the proteasome, by escorting them and by binding to the 19 S regulatory particle of the proteasome. In the present study, we show that SNEV (senescence evasion factor), a protein with in vitro E3 ligase activity, which is also involved in DNA repair and splicing, associates with the proteasome by directly binding to the beta7 subunit of the 20 S proteasome. Upon inhibition of proteasome activity, SNEV does not accumulate within the cells although its co-localization with the proteasome increases significantly. Since immunofluorescence microscopy also shows increased co-localization of SNEV with ubiquitin after proteasome inhibition, without SNEV being ubiquitinated by itself, we suggest that SNEV shows E3 ligase activity not only in vitro but also in vivo and escorts its substrate to the proteasome. Since the yeast homologue of SNEV, Prp19, also interacts with the yeast beta7 subunit of the proteasome, this mechanism seems to be conserved during evolution. Therefore these results support the hypothesis that E3 ligases might generally be involved in substrate transport to the proteasome. Additionally, our results provide the first evidence for a physical link between components of the ubiquitin-proteasome system and the spliceosome.


Assuntos
Cisteína Endopeptidases/química , Ubiquitina-Proteína Ligases/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Caenorhabditis elegans , Proteínas de Transporte/química , Linhagem Celular , Sequência Conservada , Cisteína Endopeptidases/fisiologia , Enzimas Reparadoras do DNA , Evolução Molecular , Humanos , Dados de Sequência Molecular , Proteínas Nucleares , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Conformação Proteica , Fatores de Processamento de RNA , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Ubiquitina-Proteína Ligases/fisiologia
19.
Nucleic Acids Res ; 31(21): 6104-16, 2003 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-14576297

RESUMO

CDC5L and PLRG1 are both spliceosomal proteins that are highly conserved across species. They have both been shown to be part of sub- spliceosomal protein complexes that are essential for pre-mRNA splicing in yeast and humans. CDC5L and PLRG1 interact directly in vitro. This interaction is mediated by WD40 regions in PLRG1 and the C-terminal domain of CDC5L. In order to determine whether this interaction is important for the splicing mechanism, we have designed peptides corresponding to highly conserved sequences in the interaction domains of both proteins. These peptides were used in in vitro splicing experiments as competitors to the cognate sequences in the endogenous proteins. Certain peptides derived from the binding domains of both proteins were found to inhibit in vitro splicing. This splicing inhibition could be prevented by preincubating the peptides with the corresponding partner protein that had been expressed in Escherichia coli. The results from this study indicate that the interaction between CDC5L and PLRG1 is essential for pre-mRNA splicing and further demonstrate that small peptides can be used as effective splicing inhibitors.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Precursores de RNA/metabolismo , Splicing de RNA/efeitos dos fármacos , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/química , Extratos Celulares , Núcleo Celular/metabolismo , Sequência Conservada , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Proteínas Nucleares/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Precursores de RNA/genética , Alinhamento de Sequência , Spliceossomos/química , Spliceossomos/efeitos dos fármacos , Spliceossomos/metabolismo , Especificidade por Substrato
20.
PLoS One ; 7(10): e47497, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144703

RESUMO

Originally the novel protein Blom7α was identified as novel pre-mRNA splicing factor that interacts with SNEV(Prp19/Pso4), an essential protein involved in extension of human endothelial cell life span, DNA damage repair, the ubiquitin-proteasome system, and pre-mRNA splicing. Blom7α belongs to the heteronuclear ribonucleoprotein K homology (KH) protein family, displaying 2 KH domains, a well conserved and widespread RNA-binding motif. In order to identify specific sequence binding motifs, we here used Systematic Evolution of Ligands by Exponential Enrichment (SELEX) with a synthetic RNA library. Besides sequence motifs like (U/A)(1-4) C(2-6) (U/A)(1-5), we identified an AC-rich RNA-aptamer that we termed AK48 (Aptamer KH-binding 48), binding to Blom7α with high affinity. Addition of AK48 to pre-mRNA splicing reactions in vitro inhibited the formation of mature spliced mRNA and led to a slight accumulation of the H complex of the spliceosome. These results suggest that the RNA binding activity of Blom7α might be required for pre-mRNA splicing catalysis. The inhibition of in-vitro splicing by the small RNA AK48 indicates the potential use of small RNA molecules in targeting the spliceosome complex as a novel target for drug development.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA , Sequência Rica em At/genética , Sequência de Aminoácidos , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/farmacologia , Sequência de Bases , Sítios de Ligação/genética , Ensaio de Desvio de Mobilidade Eletroforética , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Precursores de RNA/genética , Técnica de Seleção de Aptâmeros/métodos , Homologia de Sequência de Aminoácidos , Spliceossomos/efeitos dos fármacos , Spliceossomos/genética , Spliceossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa