Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 64(7): 716-728, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37233612

RESUMO

Sesame (Sesamum indicum L.) plants contain large amounts of acteoside, a typical phenylethanoid glycoside (PhG) that exhibits various pharmacological activities. Although there is increasing interest in the biosynthesis of PhGs for improved production, the pathway remains to be clarified. In this study, we established sesame-cultured cells and performed transcriptome analysis of methyl jasmonate (MeJA)-treated cultured cells to identify enzyme genes responsible for glucosylation and acylation in acteoside biosynthesis. Among the genes annotated as UDP-sugar-dependent glycosyltransferase (UGT) and acyltransferase (AT), 34 genes and one gene, respectively, were upregulated by MeJA in accordance with acteoside accumulation. Based on a phylogenetic analysis, five UGT genes (SiUGT1-5) and one AT gene (SiAT1) were selected as candidate genes involved in acteoside biosynthesis. Additionally, two AT genes (SiAT2-3) were selected based on sequence identity. Enzyme assays using recombinant SiUGT proteins revealed that SiUGT1, namely, UGT85AF10, had the highest glucosyltransferase activity among the five candidates against hydroxytyrosol to produce hydroxytyrosol 1-O-glucoside. SiUGT1 also exhibited glucosyltransferase activity against tyrosol to produce salidroside (tyrosol 1-O-glucoside). SiUGT2, namely, UGT85AF11, had similar activity against hydroxytyrosol and tyrosol. Enzyme assay using the recombinant SiATs indicated that SiAT1 and SiAT2 had activity transferring the caffeoyl group to hydroxytyrosol 1-O-glucoside and salidroside (tyrosol 1-O-glucoside) but not to decaffeoyl-acteoside. The caffeoyl group was attached mainly at the 4-position of glucose of hydroxytyrosol 1-O-glucoside, followed by attachment at the 6-position and the 3-position of glucose. Based on our results, we propose an acteoside biosynthetic pathway induced by MeJA treatment in sesame.


Assuntos
Sesamum , Sesamum/metabolismo , Glicosiltransferases/genética , Açúcares , Filogenia , Glucosídeos , Glicosídeos/metabolismo , Proteínas Recombinantes/genética , Glucose , Glucosiltransferases/metabolismo , Difosfato de Uridina
2.
Plant Cell Physiol ; 64(1): 64-79, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36218384

RESUMO

White Kwao Krua (Pueraria candollei var. mirifica), a Thai medicinal plant, is a rich source of phytoestrogens, especially isoflavonoids and chromenes. These phytoestrogens are well known; however, their biosynthetic genes remain largely uncharacterized. Cytochrome P450 (P450) is a large protein family that plays a crucial role in the biosynthesis of various compounds in plants, including phytoestrogens. Thus, we focused on P450s involved in the isoflavone hydroxylation that potentially participates in the biosynthesis of miroestrol. Three candidate P450s were isolated from the transcriptome libraries by considering the phylogenetic and expression data of each tissue of P. mirifica. The candidate P450s were functionally characterized both in vitro and in planta. Accordingly, the yeast microsome harboring PmCYP81E63 regiospecifically exhibited either 2' or 3' daidzein hydroxylation and genistein hydroxylation. Based on in silico calculation, PmCYP81E63 had higher binding energy with daidzein than with genistein, which supported the in vitro result of the isoflavone specificity. To confirm in planta function, the candidate P450s were then transiently co-expressed with isoflavone-related genes in Nicotiana benthamiana. Despite no daidzein in the infiltrated N. benthamiana leaves, genistein and hydroxygenistein biosynthesis were detectable by liquid Chromatography with tandem mass spectrometry (LC-MS/MS). Additionally, we demonstrated that PmCYP81E63 interacted with several enzymes related to isoflavone biosynthesis using bimolecular fluorescence complementation studies and a yeast two-hybrid analysis, suggesting a scheme of metabolon formation in the pathway. Our findings provide compelling evidence regarding the involvement of PmCYP81E63 in the early step of the proposed miroestrol biosynthesis in P. mirifica.


Assuntos
Isoflavonas , Pueraria , Fitoestrógenos , Pueraria/química , Pueraria/genética , Pueraria/metabolismo , Cromatografia Líquida , Hidroxilação , Genisteína , Filogenia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem , Isoflavonas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
3.
Plant Cell Physiol ; 62(3): 411-423, 2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-33416873

RESUMO

Lotus japonicus is a model legume that accumulates 8-hydroxyflavonol derivatives, such as gossypetin (8-hydroxyquercetin) 3-O-glycoside, which confer the yellow color to its petals. An enzyme, flavonoid 8-hydroxylase (F8H; LjF8H), is assumed to be involved in the biosynthesis, but the specific gene is yet to be identified. The LjF8H cDNA was isolated as a flavin adenine dinucleotide (FAD)-binding monooxygenase-like protein using flower buds and flower-specific EST data of L. japonicus. LjF8H is a single copy gene on chromosome III consisting of six exons. The conserved FAD- and NAD(P)H-dependent oxidase motifs were found in LjF8H. Phylogenetic analysis suggested that LjF8H is a member of the flavin monooxygenase group but distinctly different from other known flavonoid oxygenases. Analysis of recombinant yeast microsome expressing LjF8H revealed that the enzyme catalyzed the 8-hydroxylation of quercetin. Other flavonoids, such as naringenin, eriodictyol, apigenin, luteolin, taxifolin and kaempferol, also acted as substrates of LjF8H. This broad substrate acceptance was unlike known F8Hs in other plants. Interestingly, flavanone and flavanonol, which have saturated C-C bond at positions 2 and 3 of the flavonoid C-ring, produced 6-hyroxylflavonoids as a by-product of the enzymatic reaction. Furthermore, LjF8H only accepted the 2S-isomer of naringenin, suggesting that the conformational state of the substrates might affect product specificity. The overexpression of LjF8H in Arabidopsis thaliana and Petunia hybrida synthesized gossypetin and 8-hydroxykaempferol, respectively, indicating that LjF8H was functional in plant cells. In conclusion, this study represents the first instance of cloning and identification of F8Hs responsible for gossypetin biosynthesis.


Assuntos
Flavonoides/metabolismo , Lotus/enzimologia , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Lotus/genética , Lotus/metabolismo , Oxigenases de Função Mista/genética , Organismos Geneticamente Modificados , Filogenia , Proteínas de Plantas/genética , Saccharomyces cerevisiae
4.
J Plant Res ; 134(2): 341-352, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33570676

RESUMO

Spatiotemporal features of anthocyanin accumulation in a model legume Lotus japonicus (Regel) K.Larsen were elucidated to develop criteria for the genetic analysis of flavonoid biosynthesis. Artificial mutants and wild accessions, with lower anthocyanin accumulation in the stem than the standard wild type (B-129 'Gifu'), were obtained by ethyl methanesulfonate (EMS) mutagenesis and from a collection of wild-grown variants, respectively. The loci responsible for the green stem of the mutants were named as VIRIDICAULIS (VIC). Genetic and chemical analysis identified two loci, namely, VIC1 and VIC2, required for the production of both anthocyanins and proanthocyanidins (condensed tannins), and two loci, namely, VIC3 and VIC4, required for the steps specific to anthocyanin biosynthesis. A mutation in VIC5 significantly reduced the anthocyanin accumulation. These mutants will serve as a useful system for examining the effects of anthocyanins and proanthocyanidins on the interactions with herbivorous pests, pathogenic microorganisms and nitrogen-fixing symbiotic bacteria, Mesorhizobium loti.


Assuntos
Lotus , Mesorhizobium , Lotus/genética , Mutação , Simbiose
5.
Plant Cell Physiol ; 58(2): 398-408, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28394400

RESUMO

Pterocarpan forms the basic structure of leguminous phytoalexins, and most of the isoflavonoid pathway genes encoding the enzymes responsible for its biosynthesis have been identified. However, the last step of pterocarpan biosynthesis is a ring closure reaction, and the enzyme that catalyzes this step, 2'-hydroxyisoflavanol 4,2'-dehydratase or pterocarpan synthase (PTS), remains as an unidentified 'missing link'. This last ring formation is assumed to be the key step in determining the stereochemistry of pterocarpans, which plays a role in their antimicrobial activity. In this study, a cDNA clone encoding PTS from Glycyrrhiza echinata (GePTS1) was identified through functional expression fractionation screening of a cDNA library, which requires no sequence information, and orthologs from soybean (GmPTS1) and Lotus japonicus (LjPTS1) were also identified. These proteins were heterologously expressed in Escherichia coli and biochemically characterized. Surprisingly, the proteins were found to include amino acid motifs characteristic of dirigent proteins, some of which control stereospecific phenoxy radical coupling in lignan biosynthesis. The stereospecificity of substrates and products was examined using four substrate stereoisomers with hydroxy and methoxy derivatives at C-4'. The results showed that the 4R configuration was essential for the PTS reaction, and (-)- and (+)-pterocarpans were produced depending on the stereochemistry at C-3. In suspension-cultured soybean cells, levels of the GmPTS1 transcript increased temporarily prior to the peak in phytoalexin accumulation, strongly supporting the possible involvement of PTS in pterocarpan biosynthesis.


Assuntos
Glycyrrhiza/metabolismo , Hidroliases/metabolismo , Proteínas de Plantas/metabolismo , Pterocarpanos/metabolismo , DNA Complementar , Hidroliases/genética , Isoflavonas/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Sesquiterpenos/metabolismo , Fitoalexinas
6.
Plant Cell Physiol ; 57(12): 2497-2509, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27986914

RESUMO

Soybean (Glycine max) accumulates several prenylated isoflavonoid phytoalexins, collectively referred to as glyceollins. Glyceollins (I, II, III, IV and V) possess modified pterocarpan skeletons with C5 moieties from dimethylallyl diphosphate, and they are commonly produced from (6aS, 11aS)-3,9,6a-trihydroxypterocarpan [(-)-glycinol]. The metabolic fate of (-)-glycinol is determined by the enzymatic introduction of a dimethylallyl group into C-4 or C-2, which is reportedly catalyzed by regiospecific prenyltransferases (PTs). 4-Dimethylallyl (-)-glycinol and 2-dimethylallyl (-)-glycinol are precursors of glyceollin I and other glyceollins, respectively. Although multiple genes encoding (-)-glycinol biosynthetic enzymes have been identified, those involved in the later steps of glyceollin formation mostly remain unidentified, except for (-)-glycinol 4-dimethylallyltransferase (G4DT), which is involved in glyceollin I biosynthesis. In this study, we identified four genes that encode isoflavonoid PTs, including (-)-glycinol 2-dimethylallyltransferase (G2DT), using homology-based in silico screening and biochemical characterization in yeast expression systems. Transcript analyses illustrated that changes in G2DT gene expression were correlated with the induction of glyceollins II, III, IV and V in elicitor-treated soybean cells and leaves, suggesting its involvement in glyceollin biosynthesis. Moreover, the genomic signatures of these PT genes revealed that G4DT and G2DT are paralogs derived from whole-genome duplications of the soybean genome, whereas other PT genes [isoflavone dimethylallyltransferase 1 (IDT1) and IDT2] were derived via local gene duplication on soybean chromosome 11.


Assuntos
Dimetilaliltranstransferase/genética , Flavonóis/metabolismo , Genoma de Planta/genética , Glycine max/enzimologia , Isoflavonas/metabolismo , Pterocarpanos/metabolismo , Dimetilaliltranstransferase/metabolismo , Flavonóis/química , Duplicação Gênica , Ordem dos Genes , Isoflavonas/química , Filogenia , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pterocarpanos/química , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Glycine max/química , Glycine max/genética , Fitoalexinas
7.
Biochem Biophys Res Commun ; 469(3): 546-51, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26694697

RESUMO

Metabolic enzymes, including those involved in flavonoid biosynthesis, are proposed to form weakly bound, ordered protein complexes, called "metabolons". Some hypothetical models of flavonoid biosynthetic metabolons have been proposed, in which metabolic enzymes are believed to anchor to the cytoplasmic surface of the endoplasmic reticulum (ER) via ER-bound cytochrome P450 isozymes (P450s). However, no convincing evidence for the interaction of flavonoid biosynthetic enzymes with P450s has been reported previously. Here, we analyzed binary protein-protein interactions of 2-hydroxyisoflavanone synthase 1 (GmIFS1), a P450 (CYP93C), with cytoplasmic enzymes involved in isoflavone biosynthesis in soybean. We identified binary interactions between GmIFS1 and chalcone synthase 1 (GmCHS1) and between GmIFS1 and chalcone isomerases (GmCHIs) by using a split-ubiquitin membrane yeast two-hybrid system. These binary interactions were confirmed in planta by means of bimolecular fluorescence complementation (BiFC) using tobacco leaf cells. In these BiFC analyses, fluorescence signals that arose from the interaction of these cytoplasmic enzymes with GmIFS1 generated sharp, network-like intracellular patterns, which was very similar to the ER-localized fluorescence patterns of GmIFS1 labeled with a fluorescent protein. These observations provide strong evidence that, in planta, interaction of GmCHS1 and GmCHIs with GmIFS1 takes place on ER on which GmIFS1 is located, and also provide important clues to understand how enzymes and proteins form metabolons to establish efficient metabolic flux of (iso)flavonoid biosynthesis.


Assuntos
Aciltransferases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Flavonoides/metabolismo , Glycine max/enzimologia , Liases Intramoleculares/metabolismo , Proteínas Recombinantes/metabolismo , Mapeamento de Interação de Proteínas/métodos
9.
J Exp Bot ; 66(11): 3085-97, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25821071

RESUMO

Root parasitic weeds in Orobanchaceae cause serious damage to worldwide agriculture. Germination of the parasites requires host-derived germination stimulants, such as strigolactones, as indicators of host roots within reach of the parasite's radicles. This unique germination process was focused on to identify metabolic pathways required for germination, and to design a selective control strategy. A metabolomic analysis of germinating seeds of clover broomrape, Orobanche minor, was conducted to identify its distinctive metabolites. Consequently, a galactosyl-sucrose trisaccharide, planteose (α-d-galactopyranosyl-(1→6)-ß-d-fructofuranosyl-(2→1)-α-d-glucopyranoside), was identified as a metabolite that decreased promptly after reception of the germination stimulant. To investigate the importance of planteose metabolism, the effects of several glycosidase inhibitors were examined, and nojirimycin bisulfite (NJ) was found to alter the sugar metabolism and to selectively inhibit the germination of O. minor. Planteose consumption was similar in NJ-treated seeds and non-treated germinating seeds; however, NJ-treated seeds showed lower consumption of sucrose, a possible intermediate of planteose metabolism, resulting in significantly less glucose and fructose. This inhibitory effect was recovered by adding glucose. These results suggest that planteose is a storage carbohydrate required for early stage of germination of O. minor, and NJ inhibits germination by blocking the supply of essential glucose from planteose and sucrose. Additionally, NJ selectively inhibited radicle elongation of germinated seeds of Orobanchaceae plants (Striga hermonthica and Phtheirospermum japonicum). Thus, NJ will be a promising tool to develop specific herbicides to the parasites, especially broomrapes, and to improve our understanding of the molecular mechanisms of this unique germination.


Assuntos
Metabolismo dos Carboidratos , Orobanchaceae/parasitologia , Orobanche/metabolismo , Doenças das Plantas/parasitologia , Carboidratos/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Germinação , Metabolômica , Orobanche/crescimento & desenvolvimento , Raízes de Plantas/parasitologia , Plantas Daninhas , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
10.
Plant Cell ; 23(11): 4112-23, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22128119

RESUMO

Glycyrrhizin, a triterpenoid saponin derived from the underground parts of Glycyrrhiza plants (licorice), has several pharmacological activities and is also used worldwide as a natural sweetener. The biosynthesis of glycyrrhizin involves the initial cyclization of 2,3-oxidosqualene to the triterpene skeleton ß-amyrin, followed by a series of oxidative reactions at positions C-11 and C-30, and glycosyl transfers to the C-3 hydroxyl group. We previously reported the identification of a cytochrome P450 monooxygenase (P450) gene encoding ß-amyrin 11-oxidase (CYP88D6) as the initial P450 gene in glycyrrhizin biosynthesis. In this study, a second relevant P450 (CYP72A154) was identified and shown to be responsible for C-30 oxidation in the glycyrrhizin pathway. CYP72A154 expressed in an engineered yeast strain that endogenously produces 11-oxo-ß-amyrin (a possible biosynthetic intermediate between ß-amyrin and glycyrrhizin) catalyzed three sequential oxidation steps at C-30 of 11-oxo-ß-amyrin supplied in situ to produce glycyrrhetinic acid, a glycyrrhizin aglycone. Furthermore, CYP72A63 of Medicago truncatula, which has high sequence similarity to CYP72A154, was able to catalyze C-30 oxidation of ß-amyrin. These results reveal a function of CYP72A subfamily proteins as triterpene-oxidizing enzymes and provide a genetic tool for engineering the production of glycyrrhizin.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Glycyrrhiza/genética , Glycyrrhiza/metabolismo , Ácido Glicirrízico/metabolismo , Triterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Ácido Glicirretínico/metabolismo , Medicago truncatula/enzimologia , Dados de Sequência Molecular , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/metabolismo , Leveduras/genética
11.
Microbes Environ ; 37(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283370

RESUMO

In legume-rhizobia symbiosis, partner recognition and the initiation of symbiosis processes require the mutual exchange of chemical signals. Chemicals, generally (iso)flavonoids, in the root exudates of the host plant induce the expression of nod genes in rhizobia, and, thus, are called nod gene inducers. The expression of nod genes leads to the production of lipochitooligosaccharides (LCOs) called Nod factors. Natural nod gene inducer(s) in Lotus japonicus-Mesorhizobium symbiosis remain unknown. Therefore, we developed an LCO detection method based on ultra-high-performance liquid chromatography-tandem-quadrupole mass spectrometry (UPLC-TQMS) to identify these inducers and used it herein to screen 40 phenolic compounds and aldonic acids for their ability to induce LCOs in Mesorhizobium japonicum MAFF303099. We identified five phenolic acids with LCO-inducing activities, including p-coumaric, caffeic, and ferulic acids. The induced LCOs caused root hair deformation, and nodule numbers in L. japonicus inoculated with M. japonicum were increased by these phenolic acids. The three phenolic acids listed above induced the expression of the nodA, nodB, and ttsI genes in a strain harboring a multicopy plasmid encoding NodD1, but not that encoding NodD2. The presence of p-coumaric and ferulic acids in the root exudates of L. japonicus was confirmed by UPLC-TQMS, and the induction of ttsI::lacZ in the strain harboring the nodD1 plasmid was detected in the rhizosphere of L. japonicus. Based on these results, we propose that phenolic acids are a novel type of nod gene inducer in L. japonicus-Mesorhizobium symbiosis.


Assuntos
Lotus , Mesorhizobium , Lotus/genética , Mesorhizobium/genética , Rizosfera , Simbiose
12.
Proc Natl Acad Sci U S A ; 105(37): 14204-9, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18779566

RESUMO

Glycyrrhizin, a major bioactive compound derived from the underground parts of Glycyrrhiza (licorice) plants, is a triterpene saponin that possesses a wide range of pharmacological properties and is used worldwide as a natural sweetener. Because of its economic value, the biosynthesis of glycyrrhizin has received considerable attention. Glycyrrhizin is most likely derived from the triterpene beta-amyrin, an initial product of the cyclization of 2,3-oxidosqualene. The subsequent steps in glycyrrhizin biosynthesis are believed to involve a series of oxidative reactions at the C-11 and C-30 positions, followed by glycosyl transfers to the C-3 hydroxyl group; however, no genes encoding relevant oxidases or glycosyltransferases have been identified. Here we report the successful identification of CYP88D6, a cytochrome P450 monooxygenase (P450) gene, as a glycyrrhizin-biosynthetic gene, by transcript profiling-based selection from a collection of licorice expressed sequence tags (ESTs). CYP88D6 was characterized by in vitro enzymatic activity assays and shown to catalyze the sequential two-step oxidation of beta-amyrin at C-11 to produce 11-oxo-beta-amyrin, a possible biosynthetic intermediate between beta-amyrin and glycyrrhizin. CYP88D6 coexpressed with beta-amyrin synthase in yeast also catalyzed in vivo oxidation of beta-amyrin to 11-oxo-beta-amyrin. CYP88D6 expression was detected in the roots and stolons by RT-PCR; however, no amplification was observed in the leaves or stems, which is consistent with the accumulation pattern of glycyrrhizin in planta. These results suggest a role for CYP88D6 as a beta-amyrin 11-oxidase in the glycyrrhizin pathway.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Ácido Glicirrízico/metabolismo , Edulcorantes/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glycyrrhiza/enzimologia , Glycyrrhiza/genética , Ácido Glicirrízico/química , Dados de Sequência Molecular , Estrutura Molecular , Oxirredução , Filogenia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Edulcorantes/química
13.
FEBS Lett ; 595(20): 2608-2615, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34390592

RESUMO

Xanthones are compounds with a diphenyl ether skeleton mainly found in plants and often glycosylated at carbon atoms. Although many C-glycosyltransferases (CGTs) participating in flavone C-glycosylation have been identified, MiCGT from Mangifera indica, adding sugar to an open-chain benzophenone skeleton, is the only identified xanthone biosynthesis-related CGT. Here, we identified two CGTs from Hypericum perforatum that add sugar to the closed-ring xanthone, but not benzophenone. These CGTs catalyze sugar transfer to the C-4 position of norathyriol (1,3,6,7-tetrahydroxyxanthone) to form isomangiferin (1,3,6,7-tetrahydroxyxanthone 4-C-glucoside), a major xanthone C-glucoside. This is the first study to report CGTs that mediate the direct C-glycosylation of xanthone.


Assuntos
Glicosiltransferases/metabolismo , Hypericum/metabolismo , Xantonas/metabolismo , Sequência de Aminoácidos , Catálise , Glicosilação , Glicosiltransferases/química , Filogenia , Homologia de Sequência de Aminoácidos
14.
Plant Biotechnol (Tokyo) ; 37(3): 301-310, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33088193

RESUMO

Most leguminous plants produce (-)-type enantiomers of pterocarpans as the phytoalexin, but pea (Pisum sativum L.) produces the opposite stereoisomer of pterocarpan, (+)-pisatin. Biosynthesis of (-)-pterocarpan skeleton is completely characterized at the molecular level, and pterocarpan synthase (PTS), a dirigent (DIR) domain-containing protein, participates in the last dehydration reaction. Similarly, isoflav-3-ene, a precursor of (+)-pisatin, is likely to be biosynthesized by the DIR-mediated dehydration reaction; however the biosynthesis is still unknown. In the present study, we screened PTS homologs based on RNA-sequence data from (+)-pisatin-producing pea seedlings and demonstrated that one of the candidates encodes isoflav-3-ene synthase (I3S). Real-time PCR analysis revealed that transcripts of I3S, in addition to other genes involved in the (+)-pisatin pathway, transiently accumulated in pea upon elicitation prior to the maximum accumulation of (+)-pisatin. I3S orthologs were also found in soybean and Lotus japonicus that are not known to accumulate (+)-pterocarpan, and the catalytic function of gene products was verified to be I3S by the in vitro enzyme assay. Incubation of the crude extract of elicited soybean cells with isoflav-3-ene yielded coumestrol, suggesting that isoflav-3-ene is a precursor of coumestrol biosynthesis in soybean.

15.
DNA Res ; 14(1): 25-36, 2007 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-17452423

RESUMO

A model legume Lotus japonicus (Regel) K. Larsen is one of the subjects of genome sequencing and functional genomics programs. In the course of targeted approaches to the legume genomics, we analyzed the genes encoding enzymes involved in the biosynthesis of the legume-specific 5-deoxyisoflavonoid of L. japonicus, which produces isoflavan phytoalexins on elicitor treatment. The paralogous biosynthetic genes were assigned as comprehensively as possible by biochemical experiments, similarity searches, comparison of the gene structures, and phylogenetic analyses. Among the 10 biosynthetic genes investigated, six comprise multigene families, and in many cases they form gene clusters in the chromosomes. Semi-quantitative reverse transcriptase-PCR analyses showed coordinate up-regulation of most of the genes during phytoalexin induction and complex accumulation patterns of the transcripts in different organs. Some paralogous genes exhibited similar expression specificities, suggesting their genetic redundancy. The molecular evolution of the biosynthetic genes is discussed. The results presented here provide reliable annotations of the genes and genetic markers for comparative and functional genomics of leguminous plants.


Assuntos
Genes de Plantas , Isoflavonas/biossíntese , Lotus/genética , Lotus/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Primers do DNA/genética , DNA de Plantas/genética , Enzimas/genética , Enzimas/metabolismo , Flavonoides/biossíntese , Genoma de Planta , Isoflavonas/química , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
16.
FEBS Lett ; 580(24): 5666-70, 2006 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-16996502

RESUMO

Isoflavans and pterocarpans are the major biosynthetically connected phytoalexins in legumes. A search of the expressed sequence tag library of a model legume Lotus japonicus, which produces an (-)-isoflavan, for homologs of phenylcoumaran benzylic ether reductase catalyzing the reductive cleavage of dihydrofurans, yielded seven full-length cDNAs, and the encoded proteins were analyzed in vitro. Four of them cleaved the dihydrofuran of a pterocarpan medicarpin to yield an isoflavan (-)-vestitol and were designated pterocarpan reductase (PTR). Two PTRs displayed enantiospecificity to (-)-medicarpin, representing genuine L. japonicus PTRs, while the other two lacked enantiospecificity and were presumed to be evolutionarily primitive types.


Assuntos
DNA Complementar/genética , Flavonoides/biossíntese , Lotus/enzimologia , Lotus/genética , Oxirredutases/metabolismo , Pterocarpanos/metabolismo , Terpenos/metabolismo , DNA Complementar/isolamento & purificação , Bases de Dados de Ácidos Nucleicos , Etiquetas de Sequências Expressas , Flavonoides/química , Glutationa/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , Oxirredução , Filogenia , Pterocarpanos/química , Plântula/enzimologia , Sesquiterpenos , Terpenos/química , Fitoalexinas
17.
Phytochemistry ; 67(23): 2525-30, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17067644

RESUMO

S-adenosyl-l-methionine: 2-hydroxyisoflavanone 4'-O-methyltransferase (HI4'OMT) methylates 2,7, 4'-trihydroxyisoflavanone to produce formononetin, an essential intermediate in the synthesis of isoflavonoids with methoxy or methylenedioxy groups at carbon 4' (isoflavone numbering). HI4'OMT is highly similar (83% amino acid identity) to (+)-6a-hydroxymaackiain 3-O-methyltransferase (HMM), which catalyzes the last step of (+)-pisatin biosynthesis in pea. Pea contains two linked copies of HMM with 96% amino acid identity. In this report, the catalytic activities of the licorice HI4'OMT protein and of extracts of Escherichia coli containing the pea HMM1 or HMM2 protein are compared on 2,7,4'-trihydroxyisoflavanone and enantiomers of 6a-hydroxymaackiain. All these enzymes produced radiolabelled 2,7-dihydroxy-4'-methoxyisoflavanone or (+)-pisatin from 2,7,4'-trihydroxyisoflavanone or (+)-6a-hydroxymaakiain when incubated with [methyl-(14)C]-S-adenosyl-l-methionine. No product was detected when (-)-6a-hydroxymaackiain was used as the substrate. HI4'OMT and HMM1 showed efficiencies (relative V(max)/K(m)) for the methylation of 2,7,4'-trihydroxyisoflavanone 20 and 4 times higher than for the methylation of (+)-6a-hydroxymaackiain, respectively. In contrast, HMM2 had a higher V(max) and lower K(m) on (+)-6a-hydroxymaackiain, and had a 67-fold higher efficiency for the methylation of (+)-6a-hydroxymaackiain than that for 2,7,4'-trihydroxyisoflavanone. Among the 15 sites at which HMM1 and HMM2 have different amino acid residues, 11 of the residues in HMM1 are the same as found in HI4'OMTs from three plant species. Modeling of the HMM proteins identified three or four putative active site residues responsible for their different substrate preferences. It is proposed that HMM1 is the pea HI4'OMT and that HMM2 evolved by the duplication of a gene encoding a general biosynthetic enzyme (HI4'OMT).


Assuntos
Duplicação Gênica , Metiltransferases/genética , Metiltransferases/metabolismo , Pisum sativum/enzimologia , Pterocarpanos/biossíntese , Sequência de Aminoácidos , Catálise , Modelos Moleculares , Dados de Sequência Molecular , Especificidade por Substrato
18.
Phytochemistry ; 127: 23-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27017303

RESUMO

20-Hydroxyecdysone (20HE), a molting hormone of insects, is also distributed among a variety of plant families. 20HE is thought to play a role in protecting plants from insect herbivores. In insects, biosynthesis of 20HE from cholesterol proceeds via 7-dehydrocholesterol and 3ß,14α-dihydroxy-5ß-cholest-7-en-6-one (5ß-ketodiol), the latter being converted to 20HE through sequential hydroxylation catalyzed by four P450 enzymes, which have been cloned and identified. In contrast, little is known about plant 20HE biosynthesis, and no biosynthetic 20HE gene has been reported thus far. We recently proposed involvement of 3ß-hydroxy-5ß-cholestan-6-one (5ß-ketone) in 20HE biosynthesis in the hairy roots of Ajuga reptans var. atropurpurea (Lamiaceae). In this study, an Ajuga EST library was generated from the hairy roots and P450 genes were deduced from the library. Five genes with a high expression level (CYP71D443, CYP76AH19, CYP76AH20, CYP76AH21 and CYP716D27) were screened for a possible involvement in 20HE biosynthesis. As a result, CYP71D443 was shown to have C-22 hydroxylation activity for the 5ß-ketone substrate using a yeast expression system. The hydroxylated product, 22-hydroxy-5ß-ketone, had a 22R configuration in agreement with that of 20HE. Furthermore, labeling experiments indicated that (22R)-22-hydroxy-5ß-ketone was converted to 20HE in Ajuga hairy roots. Based on the present results, a possible 20HE biosynthetic pathway in Ajuga plants involved CYP71D443 is proposed.


Assuntos
Ajuga/química , Sistema Enzimático do Citocromo P-450/metabolismo , Ecdisterona/biossíntese , Ecdisterona/metabolismo , Lamiaceae/química , Ajuga/genética , Colestanonas/metabolismo , Colesterol/química , Citocromo P-450 CYP1A1/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Desidrocolesteróis/metabolismo , Ecdisteroides/química , Lamiaceae/metabolismo , Estrutura Molecular , Raízes de Plantas/química
19.
FEBS Lett ; 585(7): 1031-6, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21377465

RESUMO

Shionone is the major triterpenoid component of Aster tataricus possessing a unique all six-membered tetracyclic skeleton and 3-oxo-4-monomethyl structure. To clarify its biosynthetic process, an oxidosqualene cyclase cDNA was isolated from A. tataricus, and the function of the enzyme was determined in lanosterol synthase-deficient yeast. The cyclase yielded ca. 90% shionone and small amounts of ß-amyrin, friedelin, dammara-20,24-dienol, and 4-epishionone and was designated as a shionone synthase (SHS). Transcripts of SHS were detected in A. tataricus organs, confirming its involvement in shionone biosynthesis. SHS was shown to have evolved in the Asteraceae from ß-amyrin synthase lineages and acquired characteristic species- and product-specificities.


Assuntos
Aster/enzimologia , Transferases Intramoleculares/metabolismo , Triterpenos/metabolismo , Sequência de Aminoácidos , Aster/genética , Clonagem Molecular , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Humanos , Transferases Intramoleculares/química , Transferases Intramoleculares/genética , Dados de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa