Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(21): e2117865119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35576467

RESUMO

Crossover formation is essential for proper segregation of homologous chromosomes during meiosis. Here, we show that Caenorhabditis elegans cyclin-dependent kinase 2 (CDK-2) partners with cyclin-like protein COSA-1 to promote crossover formation by promoting conversion of meiotic double-strand breaks into crossover­specific recombination intermediates. Further, we identify MutSγ component MSH-5 as a CDK-2 phosphorylation target. MSH-5 has a disordered C-terminal tail that contains 13 potential CDK phosphosites and is required to concentrate crossover­promoting proteins at recombination sites. Phosphorylation of the MSH-5 tail appears dispensable in a wild-type background, but when MutSγ activity is partially compromised, crossover formation and retention of COSA-1 at recombination sites are exquisitely sensitive to phosphosite loss. Our data support a model in which robustness of crossover designation reflects a positive feedback mechanism involving CDK-2­mediated phosphorylation and scaffold-like properties of the MSH5 C-terminal tail, features that combine to promote full recruitment and activity of crossover­promoting complexes.


Assuntos
Proteínas de Caenorhabditis elegans , Quinase 2 Dependente de Ciclina , Proteínas de Ligação a DNA , Meiose , Complexo Sinaptonêmico , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Segregação de Cromossomos , Troca Genética , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fosforilação , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo
2.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-36247323

RESUMO

RAD-54.L is required for the repair of meiotic double-strand DNA breaks (DSBs), playing an essential role in promoting removal of recombinase RAD-51 and normal completion of meiotic recombination. Failure to complete meiotic DSB repair leads to 100% lethality of embryos produced by rad-54.L null mutant mothers. Here we report a new partial loss of function allele, rad-54.L(me139) , that may prove useful for investigating meiotic mechanisms by providing a sensitized genetic background that reduces but does not eliminate the essential functions of RAD-54.L.

3.
MicroPubl Biol ; 20212021.
Artigo em Inglês | MEDLINE | ID: mdl-34458691

RESUMO

Meiotic crossover formation requires the activity of multiple pro-crossover factors, including the MutSγ complex and the cyclin-related protein COSA-1, that become concentrated together at the sites of crossover recombination intermediates. Here we show that a transgene insertion expressing GFP::COSA-1 can suppress the crossover deficit caused by a partial reduction in MutSγ function. Our data, combined with previous findings, support a model in which COSA-1 promotes crossover formation, at least in part, through positive regulation of MutSγ function.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa