Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 74(14): 4014-4030, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37074373

RESUMO

Yellow-green variegation leaf phenotype adds more value to ornamental plants, but it is regarded as an undesirable trait in crop plants, affecting their yields. Until recently, the underlying mechanism regulating the yellow-green variegation phenotype has remained largely unexplored in soybean. In the present study, we indentified four Glycine max leaf yellow/green variegation mutants, Gmvar1, Gmvar2, Gmvar3, and Gmvar4, from artificial mutagenesis populations. Map-based cloning, together with the allelic identification test and CRISPR-based gene knockout, proved that mutated GmCS1 controls yellow-green variegation phenotype of the Gmvar mutants. GmCS1 encodes a chorismate synthase in soybean. The content of Phe, Tyr, and Trp were dramatically decreased in Gmcs1 mutants. Exogenous supply of three aromatic amino acid mixtures, or only Phe to Gmvar mutants, leads to recovery of the mutant phenotype. The various biological processes and signalling pathways related to metabolism and biosynthesis were altered in Gmvar mutants. Collectively, our findings provide new insights about the molecular regulatory network of yellow-green variegation leaf phenotype in soybean.


Assuntos
Cloroplastos , Glycine max , Glycine max/genética , Cloroplastos/metabolismo , Mutação , Fenótipo , Folhas de Planta/metabolismo
2.
Plant J ; 104(5): 1315-1333, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32996255

RESUMO

Allene oxide synthase (AOS) and hydroperoxide lyase (HPL) are two important members of P450 enzymes metabolizing hydroperoxy fatty acid to produce jasmonates and aldehydes respectively, which function in response to diverse environmental and developmental stimuli. However, their exact roles in soybean have not been clarified. In present study, we identified a lesion-mimic mutant in soybean named NT302, which exhibits etiolated phenotype together with chlorotic and spontaneous lesions on leaves at R3 podding stage. The underlying gene was identified as GmHPL encoding hydroperoxide lyase by map-based cloning strategy. Sequence analysis demonstrated that a single nucleotide mutation created a premature termination codon (Gln20-Ter), which resulted in a truncated GmHPL protein in NT302. GmHPL RNA was significantly reduced in NT302 mutant, while genes in AOS branch of the 13-LOX pathway were up-regulated in NT302. The mutant exhibited higher susceptibility to bacterial leaf pustule (BLP) disease, but increased resistance against common cutworm (CCW) pest. GmHPL was significantly induced in response to MeJA, wounding, and CCW in wild type soybean. Virus induced gene silencing (VIGS) of GhHPL genes gave rise to similar lesion-mimic leaf phenotypes in upland cotton, coupled with upregulation of the expression of JA biosynthesis and JA-induced genes. Our study provides evidence that competition exist between HPL and AOS branches in 13-LOX pathway of the oxylipin metabolism in soybean, thereby plays essential roles in modulation of plant development and defense.


Assuntos
Aldeído Liases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Glycine max/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Acetatos/farmacologia , Aldeído Liases/genética , Animais , Clonagem Molecular , Ciclopentanos/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Redes Reguladoras de Genes , Gossypium/genética , Mutação , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plântula/genética , Spodoptera , Xanthomonas axonopodis/patogenicidade
3.
Saudi J Biol Sci ; 29(5): 3918-3928, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844371

RESUMO

Rice is the most important crop for the majority of population across the world with sensitive behavior toward heavy metals such as chromium (Cr) in polluted regions. Although, there is no information on the Cr resistance phenotyping in rice. Herein, two different groups of rice cultivars (normal, and hybrid) were used, each group with 14 different rice cultivars. Firstly, seed germination analysis was conducted by evaluating various seed germination indices to identify the rice cultivars with greatest seed germination vigor. Furthermore, exposure of chromium (Cr) toxicity to 28 different rice varieties (NV1-NV14, HV1-HV14) caused noticeable plant biomass reduction. Subsequently, NV2, NV6, NV10, NV12, NV13 (normal type), HV1, HV4, HV8, and HV9 (hybrid types) were pragmatic as moderately sensitive varieties, while NV3, NV4, NV9, and NV14 (normal type), HV3, HV6, HV7, and HV13 were observed as moderately tolerant. Although, NV7, and HV10 were ranked most sensitive cultivars, and NV11, and HV14 were considered as most tolerant varieties as compared to the other rice (both groups) genotypes. Afterward, Cr induced reduction in chlorophyll pigments were significantly lesser in HV14 relative to NV11, NV7, and especially HV10, and as a result HV14 modulated the total soluble sugar level as well as reduced ROS accumulation, and MDA contents production by stimulating the antioxidant defense mechanism conspicuously which further reduced the electrolyte leakage as well. Our outcomes provide support to explore the Cr tolerance mechanism in cereal crops as well as knowledge about rice breeding with increased tolerance against Cr stress.

4.
Sci Rep ; 9(1): 7393, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31089185

RESUMO

Vine growth habit (VGH) is a beneficial phenotype in many wild plants, and is considered an important domesticated-related trait in soybean. However, its genetic basis remains largely unclear. Hence, in the present study we used an integrated strategy combining linkage mapping and population genome diversity analyses to reveal the genetics of VGH in soybean. In this regard, two recombinant inbred line (RIL) populations derived by crossing a common wild soybean genotype (PI342618B) with two cultivated lines viz., NN 86-4 and NN 493-1 were used to map quantitative trait loci (QTL) for VGH. Here, we identified seven and five QTLs at flowering stage (R1) and maturity stage (R8), respectively, and among them qVGH-18-1, qVGH-18-2, qVGH-19-3, qVGH-19-4 were identified as major loci (R2 > 10% and detection time ≥2). However, qVGH-18-2 was considered as a main QTL for VGH being consistently identified in both RIL populations as well as all growth stages and cropping years. Out of all the annotated genes within qVGH-18-2, Glyma18g06870 was identified as the candidate gene and named as VGH1, which was a gibberellin oxidase (GAox) belongs to 2-oxoglutarate-dependent dioxygenase (2- ODD). Interestingly, there was one member of 2-ODD/GAox in qVGH-18-1 and qVGH-19-4 named as VGH2 and VGH3, respectively. Moreover, from sequencing data analysis VGH1 and three other GAox genes were found significantly divergent between vine and erect soybean with FST value larger than 0.25. Hence, GAox was assumed to play a major role in governing inheritance of VGH in soybean. Therefore, elucidating the genetic mechanism of GAox is very useful for exploring VGH and other stem traits, as well as genetic improvement of plant type in soybean.


Assuntos
Glycine max/genética , Oxigenases de Função Mista/genética , Proteínas de Plantas/genética , Caules de Planta/crescimento & desenvolvimento , Locos de Características Quantitativas , Mapeamento Cromossômico , Coenzimas/metabolismo , Genoma de Planta/genética , Giberelinas/metabolismo , Endogamia , Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Glycine max/enzimologia , Glycine max/crescimento & desenvolvimento
5.
3 Biotech ; 9(8): 291, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31321197

RESUMO

The present study was conducted to evaluate the effects of zinc-enriched probiotics (ZnP) on growth performance, antioxidant status, immune function, related gene expression, and morphological characteristics of Wistar rats raised under high heat stress condition during summer. 36, 6-week-old male Wistar rats were randomly divided into three groups; fed with basal diet (control), basal diet with probiotics (P), and basal diet with zinc-enriched probiotics supplementation (ZnP, 100 mg/L), for 40 consecutive days. Blood samples were collected through intracardiac method on the last day of experiment and tissues were collected from liver, heart, and kidneys. The results revealed that both P and ZnP significantly (P < 0.05) enhanced growth performance. However, ZnP remarkably increased glutathione content, glutathione peroxidase, and superoxide dismutase activities but reduced malondialdehyde level in serum of the Wistar rats. The concentration of IL-2, IL-6, and IFN-γ was significantly (P < 0.05) increased with treatments of P and ZnP compared to control group while IL-10 was significantly (P < 0.05) decreased. Additionally, the expression of SOD1, SOD2, MT1, and MT2 genes was significantly (P < 0.05) up-regulated with the treatment of ZnP, but Hsp90 and Hsp70 heat shock genes were significantly (P < 0.05) down-regulated with the treatment of P and ZnP, respectively. Hematoxylin and Eosin staining showed that both P and ZnP supplementation treatments induced changes in villus height and intestinal wall thickness. In conclusion, zinc-enriched probiotics supplementation can improve the growth performance of Wistar rats under high ambient temperature through enhancing antioxidant status, immune function, related genes expression, and intestinal morphological characteristics. This product may serves as a potential nutritive supplement for Wistar rats under high heat stress conditions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa