Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 538(7626): 518-522, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27750279

RESUMO

It is widely accepted that complex interactions between cancer cells and their surrounding microenvironment contribute to disease development, chemo-resistance and disease relapse. In light of this observed interdependency, novel therapeutic interventions that target specific cancer stroma cell lineages and their interactions are being sought. Here we studied a mouse model of human T-cell acute lymphoblastic leukaemia (T-ALL) and used intravital microscopy to monitor the progression of disease within the bone marrow at both the tissue-wide and single-cell level over time, from bone marrow seeding to development/selection of chemo-resistance. We observed highly dynamic cellular interactions and promiscuous distribution of leukaemia cells that migrated across the bone marrow, without showing any preferential association with bone marrow sub-compartments. Unexpectedly, this behaviour was maintained throughout disease development, from the earliest bone marrow seeding to response and resistance to chemotherapy. Our results reveal that T-ALL cells do not depend on specific bone marrow microenvironments for propagation of disease, nor for the selection of chemo-resistant clones, suggesting that a stochastic mechanism underlies these processes. Yet, although T-ALL infiltration and progression are independent of the stroma, accumulated disease burden leads to rapid, selective remodelling of the endosteal space, resulting in a complete loss of mature osteoblastic cells while perivascular cells are maintained. This outcome leads to a shift in the balance of endogenous bone marrow stroma, towards a composition associated with less efficient haematopoietic stem cell function. This novel, dynamic analysis of T-ALL interactions with the bone marrow microenvironment in vivo, supported by evidence from human T-ALL samples, highlights that future therapeutic interventions should target the migration and promiscuous interactions of cancer cells with the surrounding microenvironment, rather than specific bone marrow stroma, to combat the invasion by and survival of chemo-resistant T-ALL cells.


Assuntos
Células da Medula Óssea/citologia , Leucemia-Linfoma de Células T do Adulto/patologia , Transplante de Neoplasias , Microambiente Tumoral , Animais , Movimento Celular , Progressão da Doença , Feminino , Células-Tronco Hematopoéticas/citologia , Humanos , Microscopia Intravital , Masculino , Camundongos , Osteoblastos/citologia , Análise de Célula Única
3.
J Cell Sci ; 127(Pt 14): 3079-93, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24777476

RESUMO

The protein iASPP (encoded by PPP1R13L) is an evolutionarily conserved p53 inhibitor, the expression of which is often upregulated in human cancers. We have recently shown that iASPP is a crucial regulator of epidermal homeostasis. Here, we report that iASPP also acts as autophagy inhibitor in keratinocytes. Our data show that depletion of iASPP protects keratinocytes from apoptosis by modulating the expression of Noxa (also known as PMAIP1). In our model, iASPP expression can affect the fission-fusion cycle, mass and shape of mitochondria. iASPP-silenced keratinocytes display disorganization of cytosolic compartments and increased metabolic stress caused by deregulation of mTORC1 signaling. Moreover, increased levels of lipidated LC3 protein confirmed the activation of autophagy in iASPP-depleted cells. We have identified a novel mechanism modulating autophagy in keratinocytes that relies upon iASPP expression specifically reducing the interaction of Atg5-Atg12 with Atg16L1, an interaction that is essential for autophagosome formation or maturation. Using organotypic culture, we further explored the link between autophagy and differentiation, and we showed that impairing autophagy affects epidermal terminal differentiation. Our data provide an alternative mechanism to explain how epithelial integrity is maintained against environmental stressors and might also improve the understanding of the etiology of skin diseases that are characterized by defects in differentiation and DNA damage responses.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Apoptose/fisiologia , Autofagia/fisiologia , Proteína 5 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/metabolismo , Diferenciação Celular/fisiologia , Células Epidérmicas , Epiderme/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo
4.
J Cell Sci ; 124(Pt 10): 1681-90, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21511732

RESUMO

The epidermal barrier varies over the body surface to accommodate regional environmental stresses. Regional skin barrier variation is produced by site-dependent epidermal differentiation from common keratinocyte precursors and often manifests as site-specific skin disease or irritation. There is strong evidence for body-site-dependent dermal programming of epidermal differentiation in which the epidermis responds by altering expression of key barrier proteins, but the underlying mechanisms have not been defined. The LCE multigene cluster encodes barrier proteins that are differentially expressed over the body surface, and perturbation of LCE cluster expression is linked to the common regional skin disease psoriasis. LCE subclusters comprise genes expressed variably in either external barrier-forming epithelia (e.g. skin) or in internal epithelia with less stringent barriers (e.g. tongue). We demonstrate here that a complex of TALE homeobox transcription factors PBX1, PBX2 and Pknox (homologues of Drosophila Extradenticle and Homothorax) preferentially regulate external rather than internal LCE gene expression, competitively binding with SP1 and SP3. Perturbation of TALE protein expression in stratified squamous epithelia in mice produces external but not internal barrier abnormalities. We conclude that epidermal barrier genes, such as the LCE multigene cluster, are regulated by TALE homeodomain transcription factors to produce regional epidermal barriers.


Assuntos
Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Repressoras/metabolismo , Fenômenos Fisiológicos da Pele/genética , Animais , Sequência de Bases , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proteínas Ricas em Prolina do Estrato Córneo/genética , Células Epidérmicas , Epiderme/metabolismo , Humanos , Queratinócitos/metabolismo , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Pele/citologia , Pele/metabolismo
5.
Cell Stem Cell ; 22(1): 64-77.e6, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29276143

RESUMO

Bone marrow vascular niches sustain hematopoietic stem cells (HSCs) and are drastically remodeled in leukemia to support pathological functions. Acute myeloid leukemia (AML) cells produce angiogenic factors, which likely contribute to this remodeling, but anti-angiogenic therapies do not improve AML patient outcomes. Using intravital microscopy, we found that AML progression leads to differential remodeling of vasculature in central and endosteal bone marrow regions. Endosteal AML cells produce pro-inflammatory and anti-angiogenic cytokines and gradually degrade endosteal endothelium, stromal cells, and osteoblastic cells, whereas central marrow remains vascularized and splenic vascular niches expand. Remodeled endosteal regions have reduced capacity to support non-leukemic HSCs, correlating with loss of normal hematopoiesis. Preserving endosteal endothelium with the small molecule deferoxamine or a genetic approach rescues HSCs loss, promotes chemotherapeutic efficacy, and enhances survival. These findings suggest that preventing degradation of the endosteal vasculature may improve current paradigms for treating AML.


Assuntos
Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/patologia , Nicho de Células-Tronco , Animais , Medula Óssea/irrigação sanguínea , Medula Óssea/patologia , Contagem de Células , Hematopoese , Humanos , Microscopia Intravital , Camundongos Endogâmicos C57BL , Baço/patologia , Células Estromais/patologia , Fatores de Tempo , Microambiente Tumoral
6.
J Invest Dermatol ; 136(7): 1460-1470, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27021405

RESUMO

Epidermal keratinocytes migrate through the epidermis up to the granular layer where, on terminal differentiation, they progressively lose organelles and convert into anucleate cells or corneocytes. Our report explores the role of autophagy in ensuring epidermal function providing the first comprehensive profile of autophagy marker expression in developing epidermis. We show that autophagy is constitutively active in the epidermal granular layer where by electron microscopy we identified double-membrane autophagosomes. We demonstrate that differentiating keratinocytes undergo a selective form of nucleophagy characterized by accumulation of microtubule-associated protein light chain 3/lysosomal-associated membrane protein 2/p62 positive autolysosomes. These perinuclear vesicles displayed positivity for histone interacting protein, heterochromatin protein 1α, and localize in proximity with Lamin A and B1 accumulation, whereas in newborn mice and adult human skin, we report LC3 puncta coincident with misshaped nuclei within the granular layer. This process relies on autophagy integrity as confirmed by lack of nucleophagy in differentiating keratinocytes depleted from WD repeat domain phosphoinositide interacting 1 or Unc-51 like autophagy activating kinase 1. Final validation into a skin disease model showed that impaired autophagy contributes to the pathogenesis of psoriasis. Lack of LC3 expression in psoriatic skin lesions correlates with parakeratosis and deregulated expression or location of most of the autophagic markers. Our findings may have implications and improve treatment options for patients with epidermal barrier defects.


Assuntos
Autofagia , Núcleo Celular/metabolismo , Epiderme/fisiologia , Queratinócitos/citologia , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular , Células Cultivadas , Epiderme/embriologia , Humanos , Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/metabolismo , Fagossomos/metabolismo , Psoríase/patologia , Pele/metabolismo , Serina-Treonina Quinases TOR/metabolismo
7.
Stem Cell Reports ; 5(1): 139-53, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26120058

RESUMO

Measuring three-dimensional (3D) localization of hematopoietic stem cells (HSCs) within the bone marrow microenvironment using intravital microscopy is a rapidly expanding research theme. This approach holds the key to understanding the detail of HSC-niche interactions, which are critical for appropriate stem cell function. Due to the complex tissue architecture of the bone marrow and to the progressive introduction of scattering and signal loss at increasing imaging depths, there is no ready-made software to handle efficient segmentation and unbiased analysis of the data. To address this, we developed an automated image analysis tool that simplifies and standardizes the biological interpretation of 3D HSC microenvironment images. The algorithm identifies HSCs and measures their localization relative to surrounding osteoblast cells and bone collagen. We demonstrate here the effectiveness, consistency, and accuracy of the proposed approach compared to current manual analysis and its wider applicability to analyze other 3D bone marrow components.


Assuntos
Medula Óssea/ultraestrutura , Células-Tronco Hematopoéticas/ultraestrutura , Microscopia Intravital , Nicho de Células-Tronco , Humanos , Processamento de Imagem Assistida por Computador
8.
J Vis Exp ; (91): e51683, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25225854

RESUMO

Through a delicate balance between quiescence and proliferation, self renewal and production of differentiated progeny, hematopoietic stem cells (HSCs) maintain the turnover of all mature blood cell lineages. The coordination of the complex signals leading to specific HSC fates relies upon the interaction between HSCs and the intricate bone marrow microenvironment, which is still poorly understood([1-2]). We describe how by combining a newly developed specimen holder for stable animal positioning with multi-step confocal and two-photon in vivo imaging techniques, it is possible to obtain high-resolution 3D stacks containing HSPCs and their surrounding niches and to monitor them over time through multi-point time-lapse imaging. High definition imaging allows detecting ex vivo labeled hematopoietic stem and progenitor cells (HSPCs) residing within the bone marrow. Moreover, multi-point time-lapse 3D imaging, obtained with faster acquisition settings, provides accurate information about HSPC movement and the reciprocal interactions between HSPCs and stroma cells. Tracking of HSPCs in relation to GFP positive osteoblastic cells is shown as an exemplary application of this method. This technique can be utilized to track any appropriately labeled hematopoietic or stromal cell of interest within the mouse calvarium bone marrow space.


Assuntos
Células da Medula Óssea/citologia , Rastreamento de Células/métodos , Células-Tronco Hematopoéticas/citologia , Nicho de Células-Tronco/fisiologia , Animais , Comunicação Celular/fisiologia , Imageamento Tridimensional/métodos , Camundongos , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Osteoblastos/citologia , Crânio/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa