Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255958

RESUMO

With nearly 1700 species, Microsporidia represent a group of obligate intracellular eukaryotes with veterinary, economic and medical impacts. To help understand the biological functions of these microorganisms, complete genome sequencing is routinely used. Nevertheless, the proper prediction of their gene catalogue is challenging due to their taxon-specific evolutionary features. As innovative genome annotation strategies are needed to obtain a representative snapshot of the overall lifestyle of these parasites, the MicroAnnot tool, a dedicated workflow for microsporidian sequence annotation using data from curated databases of accurately annotated microsporidian genes, has been developed. Furthermore, specific modules have been implemented to perform small gene (<300 bp) and transposable element identification. Finally, functional annotation was performed using the signature-based InterProScan software. MicroAnnot's accuracy has been verified by the re-annotation of four microsporidian genomes for which structural annotation had previously been validated. With its comparative approach and transcriptional signal identification method, MicroAnnot provides an accurate prediction of translation initiation sites, an efficient identification of transposable elements, as well as high specificity and sensitivity for microsporidian genes, including those under 300 bp.


Assuntos
Microsporídios , Microsporídios/genética , Fluxo de Trabalho , Evolução Biológica , Elementos de DNA Transponíveis/genética , Bases de Dados Factuais
2.
Noncoding RNA Res ; 8(3): 363-375, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37275245

RESUMO

Anncaliia algerae belongs to microsporidia, a group of obligate intracellular parasites related to fungi. These parasites are largely spread in water and food-webs and can infect a wide variety of hosts ranging from invertebrates to vertebrates including humans. In humans, microsporidian infections are mainly opportunistic as immunocompetent hosts can clear parasites naturally. Recent studies however have reported persistent microsporidian infections and have highlighted them as a risk factor in colon cancer. This may be a direct result of cell infection or may be an indirect effect of the infectious microenvironment and the host's response. In both cases, this raises the question of the effects of microsporidian infection at the host and host-cell levels. We aimed to address the question of human host intracellular response to microsporidian infection through a transcriptomic kinetic study of human foreskin fibroblasts (HFF) infected with A.algerae, a human infecting microsporidia with an exceptionally wide host range. We focused solely on host response studying both coding and small non-coding miRNA expression. Our study revealed a generalized down-regulation of cell miRNAs throughout infection with up to 547 different miRNAs downregulated at some timepoints and also transcriptomic dysregulations that could facilitate parasite development with immune and lipid metabolism genes modulation. We also hypothesize possible small nucleic acid expropriation explaining the miRNA downregulation. This work contributes to a better understanding of the dialogue that can occur between an intracellular parasite and its host at the cellular level, and can guide future studies on microsporidian infection biology to unravel the mode of action of these minimalist parasites at the tissue or host levels.We have also generated a kinetic and comprehensive transcriptomic data set of an infectious process that can help support comparative studies in the broader field of parasitology. Lastly, these results may warrant for caution regarding microsporidian exposure and persistent infections.

3.
Sci Rep ; 13(1): 8773, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253964

RESUMO

Microsporidia are obligate intracellular parasites able to infect a wide range of hosts from invertebrates to vertebrates. The success of their invasion process is based on an original organelle, the polar tube, which is suddenly extruded from the spore to inoculate the sporoplasm into the host cytoplasm. The polar tube is mainly composed of proteins named polar tube proteins (PTPs). A comparative analysis allowed us to identify genes coding for 5 PTPs (PTP1 to PTP5) in the genome of the microsporidian Anncaliia algerae. While PTP1 and PTP2 are found on the whole polar tube, PTP3 is present in a large part of the extruded polar tube except at its end-terminal part. On the contrary, PTP4 is specifically detected at the end-terminal part of the polar tube. To complete PTPs repertoire, sequential sporal protein extractions were done with high concentration of reducing agents. In addition, a method to purify polar tubes was developed. Mass spectrometry analysis conducted on both samples led to the identification of a PTP3-like protein (PTP3b), and a new PTP (PTP7) only found at the extremity of the polar tube. The specific localization of PTPs asks the question of their roles in cell invasion processes used by A. algerae.


Assuntos
Proteínas Fúngicas , Microsporídios , Animais , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Microsporídios/genética , Microsporídios/metabolismo , Citoplasma/metabolismo , Organelas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa