Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Nature ; 620(7974): 533-537, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587298

RESUMO

Controlling quantum materials with light is of fundamental and technological importance. By utilizing the strong coupling of light and matter in optical cavities1-3, recent studies were able to modify some of their most defining features4-6. Here we study the magneto-optical properties of a van der Waals magnet that supports strong coupling of photons and excitons even in the absence of external cavity mirrors. In this material-the layered magnetic semiconductor CrSBr-emergent light-matter hybrids called polaritons are shown to substantially increase the spectral bandwidth of correlations between the magnetic, electronic and optical properties, enabling largely tunable optical responses to applied magnetic fields and magnons. Our results highlight the importance of exciton-photon self-hybridization in van der Waals magnets and motivate novel directions for the manipulation of quantum material properties by strong light-matter coupling.

2.
Nature ; 602(7898): 595-600, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35197618

RESUMO

The lattice symmetry of a crystal is one of the most important factors in determining its physical properties. Particularly, low-symmetry crystals offer powerful opportunities to control light propagation, polarization and phase1-4. Materials featuring extreme optical anisotropy can support a hyperbolic response, enabling coupled light-matter interactions, also known as polaritons, with highly directional propagation and compression of light to deeply sub-wavelength scales5. Here we show that monoclinic crystals can support hyperbolic shear polaritons, a new polariton class arising in the mid-infrared to far-infrared due to shear phenomena in the dielectric response. This feature emerges in materials in which the dielectric tensor cannot be diagonalized, that is, in low-symmetry monoclinic and triclinic crystals in which several oscillators with non-orthogonal relative orientations contribute to the optical response6,7. Hyperbolic shear polaritons complement previous observations of hyperbolic phonon polaritons in orthorhombic1,3,4 and hexagonal8,9 crystal systems, unveiling new features, such as the continuous evolution of their propagation direction with frequency, tilted wavefronts and asymmetric responses. The interplay between diagonal loss and off-diagonal shear phenomena in the dielectric response of these materials has implications for new forms of non-Hermitian and topological photonic states. We anticipate that our results will motivate new directions for polariton physics in low-symmetry materials, which include geological minerals10, many common oxides11 and organic crystals12, greatly expanding the material base and extending design opportunities for compact photonic devices.

3.
Nature ; 597(7875): 187-195, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34497390

RESUMO

Polaritons are hybrid excitations of matter and photons. In recent years, polaritons in van der Waals nanomaterials-known as van der Waals polaritons-have shown great promise to guide the flow of light at the nanoscale over spectral regions ranging from the visible to the terahertz. A vibrant research field based on manipulating strong light-matter interactions in the form of polaritons, supported by these atomically thin van der Waals nanomaterials, is emerging for advanced nanophotonic and opto-electronic applications. Here we provide an overview of the state of the art of exploiting interface optics-such as refractive optics, meta-optics and moiré engineering-for the control of van der Waals polaritons. This enhanced control over van der Waals polaritons at the nanoscale has not only unveiled many new phenomena, but has also inspired valuable applications-including new avenues for nano-imaging, sensing, on-chip optical circuitry, and potentially many others in the years to come.

4.
Nature ; 600(7887): 75-80, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34853455

RESUMO

Nonlinear wave-matter interactions may give rise to solitons, phenomena that feature inherent stability in wave propagation and unusual spectral characteristics. Solitons have been created in a variety of physical systems and have had important roles in a broad range of applications, including communications, spectroscopy and metrology1-4. In recent years, the realization of dissipative Kerr optical solitons in microcavities has led to the generation of frequency combs in a chip-scale platform5-10. Within a cavity, photons can interact with mechanical modes. Cavity optomechanics has found applications for frequency conversion, such as microwave-to-optical or radio-frequency-to-optical11-13, of interest for communications and interfacing quantum systems operating at different frequencies. Here we report the observation of mechanical micro-solitons excited by optical fields in an optomechanical microresonator, expanding soliton generation in optical resonators to a different spectral window. The optical field circulating along the circumference of a whispering gallery mode resonator triggers a mechanical nonlinearity through optomechanical coupling, which in turn induces a time-varying periodic modulation on the propagating mechanical mode, leading to a tailored modal dispersion. Stable localized mechanical wave packets-mechanical solitons-can be realized when the mechanical loss is compensated by phonon gain and the optomechanical nonlinearity is balanced by the tailored modal dispersion. The realization of mechanical micro-solitons driven by light opens up new avenues for optomechanical technologies14 and may find applications in acoustic sensing, information processing, energy storage, communications and surface acoustic wave technology.

5.
Nature ; 596(7872): 362-366, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34408329

RESUMO

Polaritons in anisotropic materials result in exotic optical features, which can provide opportunities to control light at the nanoscale1-10. So far these polaritons have been limited to two classes: bulk polaritons, which propagate inside a material, and surface polaritons, which decay exponentially away from an interface. Here we report a near-field observation of ghost phonon polaritons, which propagate with in-plane hyperbolic dispersion on the surface of a polar uniaxial crystal and, at the same time, exhibit oblique wavefronts in the bulk. Ghost polaritons are an atypical non-uniform surface wave solution of Maxwell's equations, arising at the surface of uniaxial materials in which the optic axis is slanted with respect to the interface. They exhibit an unusual bi-state nature, being both propagating (phase-progressing) and evanescent (decaying) within the crystal bulk, in contrast to conventional surface waves that are purely evanescent away from the interface. Our real-space near-field imaging experiments reveal long-distance (over 20 micrometres), ray-like propagation of deeply subwavelength ghost polaritons across the surface, verifying long-range, directional and diffraction-less polariton propagation. At the same time, we show that control of the out-of-plane angle of the optic axis enables hyperbolic-to-elliptic topological transitions at fixed frequency, providing a route to tailor the band diagram topology of surface polariton waves. Our results demonstrate a polaritonic wave phenomenon with unique opportunities to tailor nanoscale light in natural anisotropic crystals.

6.
Nature ; 582(7811): 209-213, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32528096

RESUMO

Twisted two-dimensional bilayer materials exhibit many exotic electronic phenomena. Manipulating the 'twist angle' between the two layers enables fine control of the electronic band structure, resulting in magic-angle flat-band superconductivity1,2, the formation of moiré excitons3-8 and interlayer magnetism9. However, there are limited demonstrations of such concepts for photons. Here we show how analogous principles, combined with extreme anisotropy, enable control and manipulation of the photonic dispersion of phonon polaritons in van der Waals bilayers. We experimentally observe tunable topological transitions from open (hyperbolic) to closed (elliptical) dispersion contours in bilayers of α-phase molybdenum trioxide (α-MoO3), arising when the rotation between the layers is at a photonic magic twist angle. These transitions are induced by polariton hybridization and are controlled by a topological quantity. At the transitions the bilayer dispersion flattens, exhibiting low-loss tunable polariton canalization and diffractionless propagation with a resolution of less than λ0/40, where λ0 is the free-space wavelength. Our findings extend twistronics10 and moiré physics to nanophotonics and polaritonics, with potential applications in nanoimaging, nanoscale light propagation, energy transfer and quantum physics.

7.
Chem Rev ; 123(12): 7585-7654, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37224438

RESUMO

The topological properties of an object, associated with an integer called the topological invariant, are global features that cannot change continuously but only through abrupt variations, hence granting them intrinsic robustness. Engineered metamaterials (MMs) can be tailored to support highly nontrivial topological properties of their band structure, relative to their electronic, electromagnetic, acoustic and mechanical response, representing one of the major breakthroughs in physics over the past decade. Here, we review the foundations and the latest advances of topological photonic and phononic MMs, whose nontrivial wave interactions have become of great interest to a broad range of science disciplines, such as classical and quantum chemistry. We first introduce the basic concepts, including the notion of topological charge and geometric phase. We then discuss the topology of natural electronic materials, before reviewing their photonic/phononic topological MM analogues, including 2D topological MMs with and without time-reversal symmetry, Floquet topological insulators, 3D, higher-order, non-Hermitian and nonlinear topological MMs. We also discuss the topological aspects of scattering anomalies, chemical reactions and polaritons. This work aims at connecting the recent advances of topological concepts throughout a broad range of scientific areas and it highlights opportunities offered by topological MMs for the chemistry community and beyond.

9.
Phys Rev Lett ; 132(26): 263803, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38996284

RESUMO

Polar dielectrics with low crystal symmetry and sharp phonon resonances can support hyperbolic shear polaritons, which are highly confined surface modes with frequency-dependent optical axes and asymmetric dissipation features. So far, these modes have been observed only in bulk natural materials at midinfrared frequencies, with properties limited by available crystal geometries and phonon resonance strength. Here, we introduce hyperbolic shear metasurfaces, which are ultrathin engineered surfaces supporting hyperbolic surface modes with symmetry-tailored axial dispersion and loss redistribution that can maximally enhance light-matter interactions. By engineering effective shear phenomena in these engineered surfaces, we demonstrate geometry-controlled, ultraconfined, low-loss hyperbolic surface waves with broadband Purcell enhancements applicable across a broad range of the electromagnetic spectrum.

10.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38619060

RESUMO

Heterogeneous photocatalysis is an important research problem relevant to a variety of sustainable energy technologies. However, obtaining high photocatalytic efficiency from visible light absorbing semiconductors is challenging due to a combination of weak absorption, transport losses, and low activity. Aspects of this problem have been addressed by multilayer approaches, which provide a general scheme for engineering surface reactivity and stability independent of electronic considerations. However, an analogous broad framework for optimizing light-matter interactions has not yet been demonstrated. Here, we establish a photonic approach using semiconductor metasurfaces that is highly effective in enhancing the photocatalytic activity of GaAs, a high-performance semiconductor with a near-infrared bandgap. Our engineered pillar arrays with heights of ∼150 nm exhibit Mie resonances near 700 nm that result in near-unity absorption and exhibit a field profile that maximizes charge carrier generation near the solid-liquid interface, enabling short transport distances. Our hybrid metasurface photoanodes facilitate oxygen evolution and exhibit enhanced incident photon-to-current efficiencies that are ∼22× larger than a corresponding thin film for resonant excitation and 3× larger for white light illumination. Key to these improvements is the preferential generation of photogenerated carriers near the semiconductor interface that results from the field enhancement profile of magnetic dipolar-type modes.

11.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34282009

RESUMO

The quality factor of a passive, linear, small acoustic radiator is fundamentally limited by its volume normalized to the emitted wavelength, imposing severe constraints on the bandwidth and efficiency of compact acoustic sources and of metamaterials composed of arrangements of small acoustic resonators. We demonstrate that these bounds can be overcome by loading a piezoelectric transducer with a non-Foster active circuit, showing that its radiation bandwidth and efficiency can be largely extended beyond what is possible in passive radiators, fundamentally limited only by stability considerations. Based on these principles, we experimentally observe a threefold bandwidth enhancement compared to its passive counterpart, paving the way toward non-Foster acoustic radiation and more broadly active metamaterials that overcome the bandwidth constraints hindering passive systems.

12.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34413190

RESUMO

The properties of topological systems are inherently tied to their dimensionality. Indeed, higher-dimensional periodic systems exhibit topological phases not shared by their lower-dimensional counterparts. On the other hand, aperiodic arrays in lower-dimensional systems (e.g., the Harper model) have been successfully employed to emulate higher-dimensional physics. This raises a general question on the possibility of extended topological classification in lower dimensions, and whether the topological invariants of higher-dimensional periodic systems may assume a different meaning in their lower-dimensional aperiodic counterparts. Here, we demonstrate that, indeed, for a topological system in higher dimensions one can construct a one-dimensional (1D) deterministic aperiodic counterpart which retains its spectrum and topological characteristics. We consider a four-dimensional (4D) quantized hexadecapole higher-order topological insulator (HOTI) which supports topological corner modes. We apply the Lanczos transformation and map it onto an equivalent deterministic aperiodic 1D array (DAA) emulating 4D HOTI in 1D. We observe topological zero-energy zero-dimensional (0D) states of the DAA-the direct counterparts of corner states in 4D HOTI and the hallmark of the multipole topological phase, which is meaningless in lower dimensions. To explain this paradox, we show that higher-dimension invariant, the multipole polarization, retains its quantization in the DAA, yet changes its meaning by becoming a nonlocal correlator in the 1D system. By introducing nonlocal topological phases of DAAs, our discovery opens a direction in topological physics. It also unveils opportunities to engineer topological states in aperiodic systems and paves the path to application of resonances associates with such states protected by nonlocal symmetries.

13.
Nano Lett ; 23(14): 6768-6775, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37307588

RESUMO

Optical metasurfaces supporting localized resonances have become a versatile platform for shaping the wavefront of light, but their low quality (Q-) factor modes inevitably modify the wavefront over extended momentum and frequency space, resulting in limited spectral and angular control. In contrast, periodic nonlocal metasurfaces have been providing great flexibility for both spectral and angular selectivity but with limited spatial control. Here, we introduce multiresonant nonlocal metasurfaces capable of shaping the spatial properties of light using several resonances with widely disparate Q-factors. In contrast to previous designs, the narrowband resonant transmission punctuates a broadband resonant reflection window enabled by a highly symmetric array, achieving simultaneous spectral filtering and wavefront shaping in the transmission mode. Through rationally designed perturbations, we realize nonlocal flat lenses suitable as compact band-pass imaging devices, ideally suited for microscopy. We further employ modified topology optimization to demonstrate high-quality-factor metagratings for extreme wavefront transformations with large efficiency.

14.
Nano Lett ; 23(6): 2094-2099, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36897096

RESUMO

Topological photonics holds the promise for enhanced robustness of light localization and propagation enabled by the global symmetries of the system. While traditional designs of topological structures rely on lattice symmetries, there is an alternative strategy based on accidentally degenerate modes of the individual meta-atoms. Using this concept, we experimentally realize topological edge state in an array of silicon nanostructured waveguides, each hosting a pair of degenerate modes at telecom wavelengths. Exploiting the hybrid nature of the topological mode, we implement its coherent control by adjusting the phase between the degenerate modes and demonstrating selective excitation of bulk or edge states. The resulting field distribution is imaged via third harmonic generation showing the localization of topological modes as a function of the relative phase of the excitations. Our results highlight the impact of engineered accidental degeneracies on the formation of topological phases, extending the opportunities stemming from topological nanophotonic systems.

15.
Nano Lett ; 23(21): 9803-9810, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37879099

RESUMO

Two-dimensional exciton-polaritons in monolayer transition metal dichalcogenides (TMDs) exhibit practical advantages in valley coherence, optical nonlinearities, and even bosonic condensation owing to their light-emission capability. To achieve robust exciton-polariton emission, strong photon-exciton couplings are required at the TMD monolayer, which is challenging due to its atomic thickness. High-quality (Q) factor optical cavities with narrowband resonances are an effective approach but typically limited to a specific excitonic state of a certain TMD material. Herein, we achieve on-demand exciton-polariton emission from a wide range of TMDs at room temperature by hybridizing excitons with broadband Mie resonances spanning the whole visible spectrum. By confining broadband light at the TMD monolayer, our one type of Mie resonator on different TMDs enables enhanced light-matter interactions with multiple excitonic states simultaneously. We demonstrate multi-Rabi splittings and robust polaritonic photoluminescence in monolayer WSe2, WS2, and MoS2. The hybrid system also shows the potential to approach the ultrastrong coupling regime.

16.
Nano Lett ; 23(23): 11252-11259, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37948605

RESUMO

Modulating anisotropic phonon polaritons (PhPs) can open new avenues in infrared nanophotonics. Promising PhP dispersion engineering through polariton hybridization has been demonstrated by coupling gated graphene to single-layer α-MoO3. However, the mechanism underlying the gate-dependent modulation of hybridization has remained elusive. Here, using IR nanospectroscopic imaging, we demonstrate active modulation of the optical response function, quantified in measurements of gate dependence of wavelength, amplitude, and dissipation rate of the hybrid plasmon-phonon polaritons (HPPPs) in both single-layer and twisted bilayer α-MoO3/graphene heterostructures. Intriguingly, while graphene doping leads to a monotonic increase in HPPP wavelength, amplitude and dissipation rate show transition from an initially anticorrelated decrease to a correlated increase. We attribute this behavior to the intricate interplay of gate-dependent components of the HPPP complex momentum. Our results provide the foundation for active polariton control of integrated α-MoO3 nanophotonics devices.

17.
Opt Lett ; 48(11): 3115-3118, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262294

RESUMO

A general formulation for controlling the external scattering coefficients of cylindrical harmonics is presented, generalizing previous results for cloaking of a bare dielectric particle. By inserting a suitable surface admittance at the boundary between a dielectric body and the background region, cylindrical harmonic waves can be enhanced by tailoring the admittance value. Two separate limiting cases for super-scattering features are presented and compared against the same bare particle reference case, providing insights on how to enhance the multi-harmonic scattering pattern. Using this formulation, super-scattering systems can be created, which are suitable for future implementation using active or passive thin metasurfaces.

18.
Phys Rev Lett ; 130(9): 093803, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930898

RESUMO

Time metamaterials offer a great potential for wave manipulation, drawing increasing attention in recent years. Here, we explore the exotic wave dynamics of an anisotropic photonic time crystal (APTC) formed by an anisotropic medium whose optical properties are uniformly and periodically changed in time. Based on a temporal transfer matrix formalism, we show that a stationary charge embedded in an APTC emits radiation, in contrast to the case of isotropic photonic time crystals, and its distribution in momentum space is controlled by the APTC band structure. Our approach extends the functionalities of time metamaterials, offering new opportunities for radiation generation and control, with implications for both classical and quantum applications.

19.
Nature ; 542(7642): 461-464, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28192786

RESUMO

Reciprocity is a general, fundamental principle governing various physical systems, which ensures that the transfer function-the transmission of a physical quantity, say light intensity-between any two points in space is identical, regardless of geometrical or material asymmetries. Breaking this transmission symmetry offers enhanced control over signal transport, isolation and source protection. So far, devices that break reciprocity (and therefore show non-reciprocity) have been mostly considered in dynamic systems involving electromagnetic, acoustic and mechanical wave propagation associated with fields varying in space and time. Here we show that it is possible to break reciprocity in static systems, realizing mechanical metamaterials that exhibit vastly different output displacements under excitation from different sides, as well as one-way displacement amplification. This is achieved by combining large nonlinearities with suitable geometrical asymmetries and/or topological features. In addition to extending non-reciprocity and isolation to statics, our work sheds light on energy propagation in nonlinear materials with asymmetric crystalline structures and topological properties. We anticipate that breaking reciprocity will open avenues for energy absorption, conversion and harvesting, soft robotics, prosthetics and optomechanics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa