Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 141(6): 1392-403, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24595292

RESUMO

In the ventral spinal cord, generation of neuronal and glial cell subtypes is controlled by Sonic hedgehog (Shh). This morphogen contributes to cell diversity by regulating spatial and temporal sequences of gene expression during development. Here, we report that establishing Shh source cells is not sufficient to induce the high-threshold response required to specify sequential generation of ventral interneurons and oligodendroglial cells at the right time and place in zebrafish. Instead, we show that Shh-producing cells must repeatedly upregulate the secreted enzyme Sulfatase1 (Sulf1) at two critical time points of development to reach their full inductive capacity. We provide evidence that Sulf1 triggers Shh signaling activity to establish and, later on, modify the spatial arrangement of gene expression in ventral neural progenitors. We further present arguments in favor of Sulf1 controlling Shh temporal activity by stimulating production of active forms of Shh from its source. Our work, by pointing out the key role of Sulf1 in regulating Shh-dependent neural cell diversity, highlights a novel level of regulation, which involves temporal evolution of Shh source properties.


Assuntos
Proteínas Hedgehog/metabolismo , Medula Espinal/embriologia , Medula Espinal/metabolismo , Sulfatases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Padronização Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas Hedgehog/deficiência , Proteínas Hedgehog/genética , Camundongos , Células-Tronco Neurais/classificação , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Transdução de Sinais , Medula Espinal/citologia , Sulfatases/genética , Sulfotransferases/genética , Sulfotransferases/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
2.
Sci Rep ; 11(1): 118, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420239

RESUMO

Sulf2a belongs to the Sulf family of extracellular sulfatases which selectively remove 6-O-sulfate groups from heparan sulfates, a critical regulation level for their role in modulating the activity of signalling molecules. Data presented here define Sulf2a as a novel player in the control of Sonic Hedgehog (Shh)-mediated cell type specification during spinal cord development. We show that Sulf2a depletion in zebrafish results in overproduction of V3 interneurons at the expense of motor neurons and also impedes generation of oligodendrocyte precursor cells (OPCs), three cell types that depend on Shh for their generation. We provide evidence that Sulf2a, expressed in a spatially restricted progenitor domain, acts by maintaining the correct patterning and specification of ventral progenitors. More specifically, Sulf2a prevents Olig2 progenitors to activate high-threshold Shh response and, thereby, to adopt a V3 interneuron fate, thus ensuring proper production of motor neurons and OPCs. We propose a model in which Sulf2a reduces Shh signalling levels in responding cells by decreasing their sensitivity to the morphogen factor. More generally, our work, revealing that, in contrast to its paralog Sulf1, Sulf2a regulates neural fate specification in Shh target cells, provides direct evidence of non-redundant functions of Sulfs in the developing spinal cord.


Assuntos
Proteínas Hedgehog/metabolismo , Medula Espinal/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Heparitina Sulfato/metabolismo , Interneurônios/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo , Sulfatases/genética , Sulfatases/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
3.
Acta Physiol (Oxf) ; 230(4): e13543, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32743878

RESUMO

AIM: Aggression is a behavioural trait characterized by the intention to harm others for offensive or defensive purposes. Neurotransmitters such as serotonin and dopamine are important mediators of aggression. However, the physiological role of the histaminergic system during this behaviour is currently unclear. Here, we aimed to better understand histaminergic signalling during aggression by characterizing the involvement of the histamine H3 receptor (Hrh3). METHODS: We have generated a novel zebrafish Hrh3 null mutant line using CRISPR-Cas9 genome engineering and investigated behavioural changes and alterations to neural activity using whole brain Ca2+ imaging in zebrafish larvae and ribosomal protein S6 (rpS6) immunohistochemistry in adults. RESULTS: We show that genetic inactivation of the histamine H3 receptor (Hrh3) reduces aggression in zebrafish, an effect that can be reproduced by pharmacological inhibition. In addition, hrh3-/- zebrafish show behavioural impairments consistent with heightened anxiety. Larval in vivo whole brain Ca2+ imaging reveals higher neuronal activity in the forebrain of mutants, but lower activity in specific hindbrain areas and changes in measures of functional connectivity between subregions. Adult hrh3-/- zebrafish display brain region-specific neural activity changes in response to aggression of both key regions of the social decision-making network, and the areas containing histaminergic neurons in the zebrafish brain. CONCLUSION: These results highlight the importance of zebrafish Hrh3 signalling for aggression and anxiety and uncover the brain areas involved. Targeting this receptor might be a potential novel therapeutic route for human conditions characterized by heightened aggression.


Assuntos
Receptores Histamínicos H3 , Agressão , Animais , Encéfalo/metabolismo , Histamina , Humanos , Prosencéfalo/metabolismo , Receptores Histamínicos H3/metabolismo , Serotonina , Peixe-Zebra/metabolismo
4.
Elife ; 82019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31498774

RESUMO

Coordinated migration of cell collectives is important during embryonic development and relies on cells integrating multiple mechanical and chemical cues. Recently, we described that focal activation of the FGF pathway promotes the migration of the parapineal in the zebrafish epithalamus. How FGF activity is restricted to leading cells in this system is, however, unclear. Here, we address the role of Notch signaling in modulating FGF activity within the parapineal. While Notch loss-of-function results in an increased number of parapineal cells activating the FGF pathway, global activation of Notch signaling decreases it; both contexts result in defects in parapineal migration and specification. Decreasing or increasing FGF signaling in a Notch loss-of-function context respectively rescues or aggravates parapineal migration defects without affecting parapineal cells specification. We propose that Notch signaling controls the migration of the parapineal through its capacity to restrict FGF pathway activation to a few leading cells.


Assuntos
Movimento Celular , Epitálamo/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Peixe-Zebra/embriologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa