Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474560

RESUMO

Phlomis stewartii is a wild, perennial woody plant used for diverse therapeutic targets. The present work evaluated the influence of independent variables such as extraction time, solvent concentration, and speed in the range of (100 mL, 150 mL, and 200 mL), (2 h, 5 h, and 8 h), and (100 rpm, 150 rpm, and 200 rpm), respectively, on extraction yields, phytochemical components, total phenolic contents (TPC), and total flavonoid contents (TFC) of P. stewartii extract. In the present work, response surface methodology (RSM) was applied to optimize the extraction yield. High-performance liquid chromatography (HPLC) was performed to detect the bioactive constituents of the extracts. The potent extracts were analyzed to study α-amylase and α-glucosidase inhibitory activities. Under the optimized conditions of solvent concentration (200 mL), extraction time (8 h), and speed (150 rpm), the whole plant methanol extract (WPME) showed a maximum extraction yield of 13.5%, while the leaves methanol extract (LME) showed a maximum TPC of 19.5 ± 44 mg of gallic acid equivalent (GAE) per gram of extract and a maximum TFC of 4.78 ± 0.34 mg of quercetin equivalent (QE) per gram of extract. HPLC analysis showed the presence of p-coumaric, gallic acid, quercetin, salicylic acid, sinapic acid, and vanillic acid. LME showed the highest α-amylase inhibitory activity (IC50 = 46.86 ± 0.21 µg/mL) and α-glucosidase inhibitory activity (IC50 value of 45.81 ± 0.17 µg/mL). Therefore, in conclusion, LME could be considered to fix the α-amylase and α-glucosidase-mediated disorders in the human body to develop herbal phytomedicine.


Assuntos
Phlomis , Humanos , Quercetina , Metanol , alfa-Glucosidases , Extratos Vegetais/química , Solventes/química , alfa-Amilases , Compostos Fitoquímicos/química , Ácido Gálico , Antioxidantes/química , Flavonoides/farmacologia
2.
J Food Prot ; 87(7): 100306, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796115

RESUMO

Hydrogen peroxide (H2O2) is a well-known agent with a broad-spectrum antimicrobial activity against pathogenic bacteria, fungi, and viruses. It is a colorless liquid and commercially available in aqueous solution over a wide concentration range. It has been extensively used in the food industry by virtue of its strong oxidizing property and its ability to cause cellular oxidative damage in microbial cells. This review comprehensively documents recent research on the antimicrobial activity of H2O2 against organisms of concern for the food industry, as well as its effect against SARS-CoV-2 responsible for the COVID-19 pandemic. In addition, factors affecting the antimicrobial effectiveness of H2O2, different applications of H2O2 as a sanitizer or disinfectant in the food industry as well as safety concerns associated with H2O2 are discussed. Finally, recent efforts in enhancing the antimicrobial efficacy of H2O2 are also outlined.


Assuntos
Anti-Infecciosos , COVID-19 , Inocuidade dos Alimentos , Peróxido de Hidrogênio , SARS-CoV-2 , Peróxido de Hidrogênio/farmacologia , Humanos , COVID-19/prevenção & controle , Anti-Infecciosos/farmacologia , Desinfetantes/farmacologia , Microbiologia de Alimentos , Pandemias
3.
Food Sci Nutr ; 12(5): 3097-3111, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726410

RESUMO

Liver diseases, encompassing conditions such as cirrhosis, present a substantial global health challenge with diverse etiologies, including viral infections, alcohol consumption, and non-alcoholic fatty liver disease (NAFLD). The exploration of natural compounds as therapeutic agents has gained traction, notably the herbal remedy milk thistle (Silybum marianum), with its active extract, silymarin, demonstrating remarkable antioxidant and hepatoprotective properties in extensive preclinical investigations. It can protect healthy liver cells or those that have not yet sustained permanent damage by reducing oxidative stress and mitigating cytotoxicity. Silymarin, a natural compound with antioxidant properties, anti-inflammatory effects, and antifibrotic activity, has shown potential in treating liver damage caused by alcohol, NAFLD, drug-induced toxicity, and viral hepatitis. Legalon® is a top-rated medication with excellent oral bioavailability, effective absorption, and therapeutic effectiveness. Its active component, silymarin, has antioxidant and hepatoprotective properties, Eurosil 85® also, a commercial product, has lipophilic properties enhanced by special formulation processes. Silymarin, during clinical trials, shows potential improvements in liver function, reduced mortality rates, and alleviation of symptoms across various liver disorders, with safety assessments showing low adverse effects. Overall, silymarin emerges as a promising natural compound with multifaceted hepatoprotective properties and therapeutic potential in liver diseases.

4.
Int J Biol Macromol ; 263(Pt 2): 130401, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403230

RESUMO

Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen often found in ready-to-eat (RTE) foods, posing significant threats to human health. In this study, an active film based on cross-linking via Schiff base and electrostatic interaction to inactivate L. monocytogenes on RTE foods was constructed. Zinc-casein hydrolysate chelates (Zn-HCas) was prepared and blended with cationic starch (CSt) to form the substrates of the film. Then, Citral (CI) with excellent antibacterial properties was added to enhance the biological and packaging properties of the film through covalent cross-linking (Schiff base). Based on the zinc ion-activated metalloproteinases produced by L. monocytogenes, the cross-linked film could be disrupted and the release of CI was accelerated. The variation in color, FTIR, and amino group content proved that Schiff base reaction had taken place. Enhanced mechanical properties, barrier properties, thermal stability and antimicrobial activity against L. monocytogenes (exceed 99.99 %) were obtained from the CI/Zn-HCas/CSt film. The application on RTE cheese results demonstrated that the cross-linked film could be employed in active packaging field with the ability in maintaining the original chroma and texture properties of RTE cheese. In summary, the prepared cross-linked film could be used as an active packaging against L. monocytogenes contamination with great potential.


Assuntos
Monoterpenos Acíclicos , Caseínas , Listeria monocytogenes , Produtos da Carne , Humanos , Amido , Embalagem de Alimentos/métodos , Zinco , Bases de Schiff , Microbiologia de Alimentos , Produtos da Carne/microbiologia
5.
Int J Biol Macromol ; 279(Pt 2): 135091, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39214220

RESUMO

This study aimed to evaluate the efficiency of edible films made from chlorogenic acid/chitosan (CGA/CS) nanoparticles combined with photodynamic technology (PDT). Hydroxypropyl starch (HS) and κ-carrageenan (KC) were used as the main ingredients in the preservation of Mongolian cheese under the PDT condition. The mechanical characteristics, water vapor adsorption, solubility, permeability, and release of chlorogenic acid in aqueous media were evaluated. The incorporation of CGA/CS significantly enhanced the tensile strength and barrier characteristics of the edible films. The antimicrobial efficacy of the edible film was assessed over a period of 7 days while the cheese was being stored, followed by PDT application. The use of antimicrobial PDT did not cause lipid oxidation in cheese samples. Additionally, the combination of CGA/CS@HS/KC helped to reduce fat oxidation in Mongolian cheese. Utilizing an edible film in conjunction with PDT presents a viable solution for prolonging the shelf life of Mongolian cheese while maintaining its sensory attributes and nutritional qualities.

6.
Int J Food Microbiol ; 415: 110647, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38422678

RESUMO

Staphylococcus aureus (S. aureus) enterotoxins have aroused great concern to food safety owing to its increased risk of food poisoning. The current research aimed to investigate the anti-virulence mechanisms of phloretin against S. aureus in terms of toxin activity and gene expression. The results indicated that phloretin could effectively inhibit the production of hemolysins and enterotoxins, and its anti-virulence effect was exerted in a concentration-dependent manner. Transcriptome results indicated that phloretin could downregulate the transcription level of majority virulence factors related genes (68 %) of S. aureus, including the quorum sensing-related genes (agrB, agrC, agrA, sspA, splF, splD and others) and bacterial secretion system-related genes (secDF, secY2, and yidC). In addition, it was speculated that phloretin was most likely to bind to the AgrA DNA binding domain, thereby affecting the expression of downstream virulence genes (hla, seb, spa, rot, geh, etc) based on molecular docking. Finally, the application in cooked chicken indicated that phloretin could effectively decrease the content of enterotoxins and improve the storage quality of cooked chicken. These findings not only evidenced the feasible anti-virulence activity of phloretin, but also provided a new strategy to prevent S. aureus food poisoning in cooked meat preservation.


Assuntos
Doenças Transmitidas por Alimentos , Infecções Estafilocócicas , Animais , Staphylococcus aureus , Virulência/genética , Galinhas/microbiologia , Simulação de Acoplamento Molecular , Floretina/farmacologia , Floretina/metabolismo , Enterotoxinas/genética , Enterotoxinas/metabolismo , Infecções Estafilocócicas/microbiologia , Perfilação da Expressão Gênica , Antibacterianos/farmacologia
7.
Food Chem ; 439: 138160, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086233

RESUMO

The current synthetic plastic-based packaging creates environmental hazards that impact climate change. Hence, the topic of the current research in food packaging is biodegradable packaging and its development. In addition, new smart packaging solutions are being developed to monitor the quality of packaged foods, with dual functions as food preservation and quality indicators. In the creation of intelligent and active food packaging, many natural colorants have been employed effectively as pH indicators and active substances, respectively. This review provides an overview of biodegradable polymers and natural colorants that are being extensively studied for pH-indicating packaging. A comprehensive discussion has been provided on the current status of the development of intelligent packaging systems for food, different incorporation techniques, and technical challenges in the development of such green packaging. Finally, the food industry and environmental protection might be revolutionized by pH-sensing biodegradable packaging enabling real-time detection of food product quality and safety.


Assuntos
Embalagem de Alimentos , Conservação de Alimentos , Embalagem de Alimentos/métodos , Biopolímeros/química , Conservação de Alimentos/métodos , Qualidade dos Alimentos , Concentração de Íons de Hidrogênio
8.
Biology (Basel) ; 13(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39056703

RESUMO

Streptococcus gordonii is a gram-positive, mutualistic bacterium found in the human body. It is found in the oral cavity, upper respiratory tract, and intestines, and presents a serious clinical problem because it can lead to opportunistic infections in individuals with weakened immune systems. Streptococci are the most prevalent inhabitants of oral microbial communities, and are typical oral commensals found in the human oral cavity. These streptococci, along with many other oral microbes, produce multispecies biofilms that can attach to salivary pellicle components and other oral bacteria via adhesin proteins expressed on the cell surface. Antibiotics are effective against this bacterium, but resistance against antibodies is increasing. Therefore, a more effective treatment is needed. Vaccines offer a promising method for preventing this issue. This study generated a multi-epitope vaccine against Streptococcus gordonii by targeting the completely sequenced proteomes of five strains. The vaccine targets are identified using a pangenome and subtractive proteomic approach. In the present study, 13 complete strains out of 91 strains of S. gordonii are selected. The pangenomics results revealed that out of 2835 pan genes, 1225 are core genes. Out of these 1225 core genes, 643 identified as non-homologous proteins by subtractive proteomics. A total of 20 essential proteins are predicted from non-homologous proteins. Among these 20 essential proteins, only five are identified as surface proteins. The vaccine construct is designed based on selected B- and T-cell epitopes of the antigenic proteins with the help of linkers and adjuvants. The designed vaccine is docked against TLR2. The expression of the protein is determined using in silico gene cloning. Findings concluded that Vaccine I with adjuvant shows higher interactions with TLR2, suggesting that the vaccine has the ability to induce a humoral and cell-mediated response to treat and prevent infection; this makes it promising as a vaccine against infectious diseases caused by S. gordonii. Furthermore, validation of the vaccine construct is required by in vitro and in vivo trials to check its actual potency and safety for use to prevent infectious diseases caused by S. gordonii.

9.
Int J Biol Macromol ; 276(Pt 2): 133920, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39029840

RESUMO

Chicken meat is highly perishable and mainly preserved by plastic packaging materials, whereas their widely used have increased environmental burden and threatened human health. Bioactive packaging materials fabricated by biopolymers are promising alternatives for meat preservation. Herein, cassava starch (CS)/sodium carboxymethyl cellulose (CMC) edible films fortified with Litsea cubeba essential oil (LC-EO) were fabricated and characterized. Results showed the textural, mechanical and barrier properties of the CS/CMC edible films were significantly improved after incorporating with LC-EO. Moreover, the composite edible films exhibited potent antibacterial properties, biodegradability, hydrophobicity, and thermal stability. Whereas the water solubility and moisture content was reduced up to 29.68 % and 24.37 %, respectively. The release behavior of LC-EO suggested the suitability of the composite edible films for acidic foods. Comparing with the control group, the pH values of the meat samples packaged with CS/CMC/LCEO-4 mg/mL edible films maintained at around 6.7, and weight loss rate was 15 %. The color and texture changes, and the lipid oxidation of the meat samples with CS/CMC/LCEO-4 mg/mL packaging were also markedly delayed. The microbial growth was retarded at 6.35 log CFU/g after storage for 10 days. These findings suggested the CS/CMC/LCEO-4 mg/mL edible films had great potential for chicken meat preservation.


Assuntos
Galinhas , Filmes Comestíveis , Conservação de Alimentos , Litsea , Manihot , Carne , Óleos Voláteis , Amido , Animais , Amido/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Manihot/química , Conservação de Alimentos/métodos , Litsea/química , Carne/análise , Embalagem de Alimentos/métodos , Antibacterianos/química , Antibacterianos/farmacologia , Solubilidade , Carboximetilcelulose Sódica/química
10.
Int J Biol Macromol ; 274(Pt 1): 133307, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908637

RESUMO

This article compared the effects of hot air drying (HAD), infrared drying (IRD), and cold plasma (CP) as a pretreatment on the structure, quality, and digestive characteristics of starch extracted from yam. As the most commonly used drying method, HAD was used as a control. SEM and CLSM images showed that all treatments preserve the integrity of the yam starch. CP caused some cracks and breaks in the starch granules. IRD did not destroy the crystal structure of starch molecules, but made the spiral structure tighter and increased short-range orderliness. However, CP led to the depolymerization and dispersion of starch molecular chains, resulting in a decrease in average molecular weight and relative crystallinity. These molecular conformation changes caused by different processes led to differences in solubility, swelling power, pasting parameters, digestion characteristics, and functional characteristics. This study provided an important basis for the reasonable drying preparation and utilization of yam starch.


Assuntos
Dessecação , Dioscorea , Gases em Plasma , Solubilidade , Amido , Amido/química , Dioscorea/química , Gases em Plasma/química , Dessecação/métodos , Peso Molecular
11.
Food Chem ; 460(Pt 2): 140732, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39106807

RESUMO

Chemical pollutants such as mycotoxins and pesticides exert harmful effects on human health such as inflammation, oxidative stress, and cancer. Several strategies were applied for food decontamination, including physicochemical and biological strategies. The present review comprehensively discussed the recent efforts related to the biodegradation of eight food chemical contaminants, including mycotoxins, acrylamide, biogenic amines, N-nitrosamines, polycyclic aromatic hydrocarbons, bisphenol A, pesticides, and heavy metals by lactic acid bacteria (LAB). Biological detoxification by LAB such as Lactobacillus is a promising approach to remove the risks related to the presence of chemical and environmental pollutants in foodstuffs. It is a safe, efficient, environmentally friendly, and low-cost strategy to remove hazardous compounds. LAB can directly decrease these chemical pollutants by degradation or adsorption. Also, it can indirectly reduce the content of these pollutants by reducing their precursors. Hence, LAB can contribute to reducing chemical pollutants in contaminated foods and enhance food safety.


Assuntos
Biodegradação Ambiental , Contaminação de Alimentos , Inocuidade dos Alimentos , Contaminação de Alimentos/análise , Humanos , Micotoxinas/metabolismo , Micotoxinas/análise , Micotoxinas/química , Lactobacillales/metabolismo , Lactobacillus/metabolismo , Praguicidas/metabolismo , Praguicidas/química , Praguicidas/análise
12.
Sci Rep ; 14(1): 14802, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926468

RESUMO

Long-chain polyunsaturated fatty acids (LCPUFA) are of interest due to their potential health properties and have a significant role in reducing the risk of various chronic diseases in humans. It is commonly used as a supplement. However, lipid oxidation is an important negative factor caused by environmental, processing, and limited water solubility of LCPUFA, making them difficult to incorporate into food products. The objective of this research work was to prevent oxidation, extend shelf life, enhance the stability of fatty acids, and to achieve controlled release by preparing spray-dried powder (SDM). For spray-drying, aqueous emulsion blends were formulated using a 1:1 ratio of chia seed oil (CSO) and fish oil (FO) and using a laboratory-scale spray-dryer with varying conditions: inlet air temperature (IAT, 125-185 °C), wall material (WM, 5-25%), pump speed (PS, 3-7 mL/min), and needle speed (NS, 3-11 s). The maximum alpha-linolenic acid (ALA) content was 33 ± 1%. The highest values of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the microcapsules were 8.4 ± 0.4 and 13 ± 1%, respectively. Fourier transform infrared and X-Ray diffraction analysis results indicated that SDM was successfully formulated with Gum Arabic and maltodextrin (MD). The blending without encapsulation of CSO and FO was digested more efficiently and resulted in more oil being released with simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and SGF + SIF conditions without heating. No significant changes were observed for saturated, monounsaturated, and LCPUFA, whether exposed or not to gastrointestinal conditions. However, compared to the release of SDM, it can be useful for designing delivery systems for the controlled release of essential fatty acids.


Assuntos
Cápsulas , Óleos de Peixe , Secagem por Atomização , Óleos de Peixe/química , Óleos de Plantas/química , Salvia/química , Ácidos Graxos/química , Humanos
13.
Clin Nutr ESPEN ; 62: 1-9, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901928

RESUMO

BACKGROUND & AIMS: Resistant starch (RS) is a prebiotic fiber that has been scientifically shown to control the development of obesity. Prebiotic role of RS has also seen to be very important as it helps gut bacteria to regulate fermentation and fatty acid production. This study aimed to check the different levels of RS on glycemic index, oxidative stress and mineral absorption rate in healthy rat models. To evaluate these objectives, the trial was conducted for 40 days of follow up; 10 days were the adjustment period and the collection period over 30 days. METHODS: Thirty-six healthy female Wistar rats were divided into 4 groups of (9 animals each) NC (Normal Control: without resistant starch), RS0.20 (resistant starch: 0.20 g/kg body weight), RS0.30 (resistant starch: 0.30 g/kg body weight), RS0.40 (resistant starch: 0.40 g/kg body weight). All the diets were isocaloric and isonitroginous. RESULTS: The impact of different levels of RS on the dry-matter intake (DMI) presented statistically significant results (p ≤ 0.05): DMI was reduced in RS (0.02) fed rats as compared to NC rats in first 3 weeks; and after 4th and 5th weeks, there was a DMI reduction of 28% in RS (0.04) fed rats. Moreover, there was no significant increase in the nutrient intake in all RS diets. The dry-matter (DM) digestibility was statistically significantly (P ≤ 0·05), which increased in all rats fed with different level of RS. The weight loss showed statistically significant results: RS (0.04) exhibited 19 g reduction in weight as compared with NC rats. Significant increase was observed in total oxidant status (TOS), in all the RS fed rats when compared with NC rats. The levels of Mg, Ca, Fe and Zn were shown to be decrease in feces analysis, which proves their better absorbance in gut. Statistically significant increase was observed in antioxidant capacity, whereas significant decrease was observed in the total weight of the animals, showing the role of RS in controlling obesity. CONCLUSIONS: Overall, significant results were found in all dosage level of RS but long term administration of the higher dosage level (RS0.40) may need to be studied for enhanced results. RS can help improve insulin sensitivity in overweight adults.


Assuntos
Índice Glicêmico , Estresse Oxidativo , Ratos Wistar , Amido , Animais , Feminino , Ratos , Minerais/metabolismo , Fibras na Dieta , Amido Resistente , Prebióticos , Absorção Intestinal , Dieta
14.
ACS Omega ; 9(6): 6787-6796, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371827

RESUMO

By dry crystallization, concentrations of unsaturated fatty acids and bioactive compounds can be increased in olein and super-olein fractions in vegetable oils. Among all sources of vegetable oils, safflower oil (SO) possesses the maximum linoleic acid content. To boost the industrial applications of SO, two variants were produced by single- and two-stage crystallization. This study aimed to determine the fatty acid compositions, phenolic compounds, phytosterols, and oxidative stability of fractionated olein (OF) and double-fractionated olein (DFO) produced by dry crystallization. For this, SO was cooled to -45 °C and filtered, the filtrate was denoted as single-fractionated olein (OF), and 40% of this section was taken for analytical purposes, while the remaining 60% was again cooled to -70 °C and filtered, and the filtrate was denoted as double-fractionated olein (DFO). Unfractionated safflower (SO) was used as a control, filled in amber glass bottles, and stored at 20-25 °C for 90 days. Fatty acid compositions and phytosterols were determined by gas chromatography-mass spectrometry (GC-MS). Phenolic compounds and induction periods were determined by high-performance liquid chromatography (HPLC) and Rancimat. GC-MS analysis revealed that the C18:2 contents of SO, OF, and DFO were 77.63 ± 0.82, 81.57 ± 0.44, and 89.26 ± 0.48 mg/100 g (p < 0.05), respectively. The C18:1 contents of SO, OF, and DFO were 6.38 ± 0.19, 7.36 ± 0.24, and 9.74 ± 0.32 mg/100 g (p < 0.05), respectively. HPLC analysis showed that phenolic compounds were concentrated in the low-melting-point fractions. In DFO, concentrations of tyrosol, rutin, vanillin, ferulic acid, and sinapic acid were 57.36 ± 0.12, 129.45 ± 0.38, 165.11 ± 0.55, 183.61 ± 0.15, 65.94 ± 0.11, and 221.75 ± 0.29 mg/100 g, respectively. In SO, concentrations of tyrosol, rutin, vanillin, ferulic acid, and sinapic acid were 24.79 ± 0.08, 78.93 ± 0.25, 115.67 ± 0.41, 34.89 ± 0.51, and 137.26 ± 0.08 mg/100 g, respectively. In OF, concentrations of tyrosol, rutin, vanillin, ferulic acid, and sinapic acid were 35.96 ± 0.20, 98.69 ± 0.64, 149.14 ± 0.13, 57.53 ± 0.74, and 188.28 ± 0.82 mg/100 g, respectively. The highest concentrations of brassicasterol, campesterol, stigmasterol, ß-sitosterol, avenasterol, stigmastenol, and avenasterol were noted in DFO followed by OF and SO. The total antioxidant capacities of SO, OF, and DFO were 54.78 ± 0.12, 71.36 ± 0.58, and 86.44 ± 0.28%, respectively. After the end of the storage time, the peroxide values (POVs) of SO, OF, and DFO stored for 3 months were 0.68, 0.85, and 1.16 mequiv O2/kg, respectively, with no difference in the free fatty acid content.

15.
ACS Omega ; 9(7): 8221-8228, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405494

RESUMO

There is a growing demand for nutritious food products that contain specific ingredients, such as long-chain polyunsaturated fatty acids (LCPUFAs). In the case of LCPUFAs, protection against lipid peroxidation is difficult, and microencapsulation emerges as an alternative. The aim of this research work is to develop mayonnaise containing spray-dried microcapsules (SDM). Fortified mayonnaise was developed using various treatments such as (T1) incorporating chia seed oil (CSO), (T2) incorporating fish oil (FO), (T3) incorporating blend of chia and fish oil, (T4) incorporating the SDM of CSO, (T5) incorporating the SDM of FO, and (T6) incorporating the SDM of chia and fish oil blend as well as controls. Thereafter, during the 15-day storage period, the fatty acids (FAs) composition, free fatty acids (FFAs), peroxide value (PV), and sensory properties of fortified mayonnaise were examined every 5 days. The overall results showed that the oxidative stability of mayonnaise formulated with SDM has been improved, and it can be used as a fortifying agent in the processing of many food products. Treatments containing SDM of up to 4% did not differ from the control in sensory analysis. Sensory scores of SDM samples showed a slight decrease in off-flavor scores and were in an acceptable range. Therefore, SDM developed from CSO and FO blends can be recommended for supplementation in different food products for long-time storage.

16.
ACS Omega ; 9(30): 32799-32806, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100282

RESUMO

The aphid, Schizaphis graminum Rondani (Hemiptera: Aphididae), is one of the most destructive pests of wheat. It is responsible for significant economic losses in the agricultural sector, with an estimated 45% of wheat fields affected. Plant-based insecticides have seen a rapid increase in popularity in recent years due to their efficacy, cost-effectiveness, biodegradability, and lower toxicity compared to synthetic pesticides. The study aimed to evaluate the toxic potential of S. longipedunculata extracts against S. graminum and investigate the insect's feeding behavior on wheat. Initially macerated in methanol, the different extracts of S. longipedunculata organs were fractionated using n-hexane, chloroform, ethyl acetate, and butanol. The feeding behavior was analyzed by comparing the waveforms generated by the EPG with the control. After 72 h of treatment, the ethyl acetate fraction extracted from root had the highest toxicity against aphids, with mean 26 mortality of S. graminum at LC50 of 330 ppm; 25 mortality S. graminum at LC50 of 400 ppm for leaves; and mean 24.5 mortality S. graminum at LC50 of 540 ppm in stem bark. EPG analysis indicated that the extract fractions enhanced plant tissue resistance by significantly preventing aphid access to the phloem. The toxic effect of the botanical extracts significantly enhanced the chemical composition of the leaf medium, resulting in a drastic reduction in the number of tissue attacks by S. graminum. In summary, besides their toxicity to S. graminum, extracts of S. longipedunculata reinforce the plant's defense mechanisms, significantly reducing the S. graminum population. They also reinforce wheat's defense mechanisms. S. longipedunculata can, therefore, be used as a promising agent in the biological control of S. graminum.

17.
Int J Food Microbiol ; 426: 110898, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39241544

RESUMO

This study investigated the antibacterial effect of ultrasound (US) combined with Litsea cubeba essential oil nanoemulsion (LEON) on Salmonella Typhimurium in kiwifruit juice and effect on the quality and sensory properties of kiwifruit juice. In this study, LEON prepared by ultrasonic emulsification method had a good particle size distribution and high stability. The US+LEON treatment significantly (P < 0.05) improved antibacterial efficacy, compared to the control, and would not destroy the nutritional components containing ascorbic acid, flavonoids, total phenol and total soluble solids. Meanwhile, US+LEON treatment enhanced 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis-(3-ethylbenzothiazoline-6 sulfonic acid) (ABTS) radical scavenging capacity and ferric ion reducing antioxidant power (FRAP). In terms of sensory properties, US and LEON had a significant (P < 0.05) effect on the odor and overall morphology of kiwifruit juice. The enhance of antibacterial efficacy and the retention of nutrients by combined treatments shows that US+LEON is a promising antibacterial method that will provide new ideas for the processing and safety of fruit juices, and the US parameters and LEON concentration should be adjusted to reduce the effect on food sensory properties in future studies.

18.
Food Res Int ; 192: 114765, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147557

RESUMO

In this study, Listeria monocytogenes from minced pork was evaluated for changes in resistance to thermal treatment and gastric fluid following environmental stresses during food processing. Bacteria were exposed to cold stress, followed by successive exposures to different stressors (lactic acid (LA), NaCl, or Nisin), followed by thermal treatments, and finally, their gastrointestinal tolerance was determined. Adaptation to NaCl stress reduced the tolerance of L. monocytogenes to subsequent LA and Nisin stress. Adaptation to LA stress increased bacterial survival in NaCl and Nisin-stressed environments. Bacteria adapted to Nisin stress showed no change in tolerance to subsequent stress conditions. In addition, treatment with NaCl and LA enhanced the thermal tolerance of L. monocytogenes, but treatment with Nisin decreased the thermal tolerance of the bacteria. Almost all of the sequential stresses reduced the effect of a single stress on bacterial thermal tolerance. The addition of LA and Nisin as a second step of stress reduced the tolerance of L. monocytogenes to gastric fluid, whereas the addition of NaCl enhanced its tolerance. The results of this study are expected to inform processing conditions and sequences for meat preservation and processing and reduce uncertainty in risk assessment of foodborne pathogens due to stress adaptation.


Assuntos
Manipulação de Alimentos , Microbiologia de Alimentos , Listeria monocytogenes , Produtos da Carne , Nisina , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/fisiologia , Nisina/farmacologia , Produtos da Carne/microbiologia , Animais , Manipulação de Alimentos/métodos , Temperatura Alta , Cloreto de Sódio , Suínos , Estresse Fisiológico , Conservação de Alimentos/métodos , Adaptação Fisiológica
19.
Sci Rep ; 14(1): 18397, 2024 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117977

RESUMO

Antibiotics, improper food, and stress have created a dysbiotic state in the gut and almost 81% of the world's population has been affected due to the pandemic of COVID-19 and the prevalence of dengue virus in the past few years. The main intent of this study is to synthesize nanosynbiotics as nu traceuticals by combining probiotics, and prebiotics with nanoformulation. The effectiveness of the nanosynbiotics was evaluated using a variety of Nutra-pharmacogenetic assays leading to an AI-integrated formulation profiling was assessed by using machine learning methods. Consequently, Acetobacter oryzoeni as a probiotic and inulin as a prebiotic has been chosen and iron-mediated nanoformulation of symbiotic is achieved. Nanosynbiotics possessed 89.4, 96.7, 93.57, 83.53, 88.53% potential powers of Nutra-pharmacogenetic assays. Artificial intelligent solid dispersion formulation of nanosynbiotics has high dissolution, absorption, distribution, and synergism, in addition, they are non-tox, non-allergen and have a docking score of - 10.83 kcal/mol, implying the best interaction with Pregnane X receptor involved in dysbiosis. The potential of nanosynbiotics to revolutionize treatment strategies through precise targeting and modulation of the gut microbiome for improved health outcomes and disease management is promising. Their transformational influence is projected to be powered by integration with modern technology and customized formulas. Further in-vivo studies are required for the validation of nanosynbiotics as nutraceuticals.


Assuntos
Disbiose , Microbioma Gastrointestinal , Prebióticos , Probióticos , Humanos , Inteligência Artificial , COVID-19 , SARS-CoV-2 , Composição de Medicamentos/métodos , Nanopartículas/química , Inulina/química
20.
Ital J Food Saf ; 12(1): 10716, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37064517

RESUMO

Foodborne illnesses are responsible for about half a million deaths annually, of which 30% occur among kids. This study aimed to assess the current food safety knowledge and practice level of Saudi women in Al-Ahsa region, Saudi Arabia. A cross-sectional study was conducted through personal interviews among 239 Saudi women. The questionnaire consisted of close-ended questions covering different aspects of food safety knowledge and practices at home and during shopping. Descriptive analyses were used to identify the level of participant's awareness, and the scores were shown in three categories (good - fair - poor) based on their food safety knowledge and practice awareness. The effect of socio-demographic characteristics and their correlation to food safety knowledge and practices was conducted using Chisquare analysis. The results about food safety knowledge showed that around 50% of participants achieved a good score, and 37.5% achieved a fair score, while 12.5% achieved a poor score. In comparison, the participants achieved 75% good score, whereas 12.5% achieved both fair and poor in food safety practices. The results also highlighted a significant correlation (P<0.05) between level of food safety knowledge, practices of participants and their age, marital status, work status, and educational level, while there's no correlation with their family size and total income. Although, the overall result showed good level in food safety knowledge and slightly less in food safety practices among Saudi women living in Al-Ahsa region, continuous education, training, awareness, and motivation are highly recommended to improve women's knowledge and practices to higher levels.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa