Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 27(9): 095704, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26855053

RESUMO

A simple, convenient method for the formation of hybrid metal/conductive polymer nanostructures is described. Polyimidazole (PIm) has been templated on λ-DNA via oxidative polymerisation of imidazole using FeCl3 to produce conductive PIm/DNA nanowires. The PIm/DNA nanowires were decorated with Pd (Pd/PIm/DNA) by electroless reduction of PdCl4(-2) with NaBH4 in the presence of PIm/DNA; the choice of imidazole was motivated by the potential Pd(II) binding site at the pyridinic N atom. The formation of PIm/DNA and the presence of metallic Pd on Pd/PIm/DNA nanowires were verified by FTIR, UV-vis and XPS spectroscopy techniques. AFM studies show that the nanowires have diameters in the range 5-45 nm with a slightly greater mean diameter (17.1 ± 0.75 nm) for the Pd-decorated nanowires than the PIm/DNA nanowires (14.5 ± 0.89 nm). After incubation for 24 h in the polymerisation solution, the PIm/DNA nanowires show a smooth, uniform morphology, which is retained after decoration with Pd. Using a combination of scanned conductance microscopy, conductive AFM and two-terminal measurements we show that both types of nanowire are conductive and that it is possible to discriminate different possible mechanisms of transport. The conductivity of the Pd/PIm/DNA nanowires, (0.1-1.4 S cm(-1)), is comparable to the PIm/DNA nanowires (0.37 ± 0.029 S cm(-1)). In addition, the conductance of Pd/PIm/DNA nanowires exhibits Arrhenius behaviour (E(a )= 0.43 ± 0.02 eV) as a function of temperature in contrast to simple Pd/DNA nanowires. These results indicate that although the Pd crystallites on Pd/PIm/DNA nanowires decorate the PIm polymer, the major current pathway is through the polymer rather than the Pd.

2.
Faraday Discuss ; 164: 71-91, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24466659

RESUMO

Electroless templating on DNA is established as a means to prepare high aspect ratio nanowires via aqueous reactions at room temperature. In this report we show how Pd nanowires with extremely small grain sizes (< 2 nm) can be prepared by reduction of PdCl4(2-) in the presence of lambda-DNA. In AFM images the wires are smooth and uniform in appearance, but the grain size estimated by the Scherrer treatment of line broadening in X-ray diffraction is less than the diameter of the wires from AFM (of order 10 nm). Electrical characterisation of single nanowires by conductive AFM shows ohmic behaviour, but with high contact resistances and a resistivity (-10(-2) omega cm) much higher than the bulk value for Pd metal (-10(-5) cm @ 20 degrees C). These observations can be accounted for by a model of the nanowire growth mechanism which naturally leads to the formation of a granular metal. Using a simple combing technique with control of the surface hydrophilicity, DNA-templated Pd nanowires have also been prepared as networks on an Si/SiO2 substrate. These networks are highly convenient for the preparation of two-terminal electronic sensors for the detection of hydrogen gas. The response of these hydrogen sensors is presented and a model of the sensor response in terms of the diffusion of hydrogen into the nanowires is described. The granular structure of the nanowires makes them relatively poor conductors, but they retain a useful sensitivity to hydrogen gas.


Assuntos
DNA/química , Hidrogênio/análise , Nanofios , Paládio/química , Moldes Genéticos , Microscopia de Força Atômica , Análise Espectral
3.
ACS Nano ; 4(4): 2149-59, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20218665

RESUMO

Polyindole (PIn) nanowires were formed on a lambda-DNA template by chemical oxidation of indole using aqueous FeCl3. The resulting nanowires are smooth, regular, conductive and had diameters in the range of 5-30 nm. These features allow them to be aligned by molecular combing and studied by scanned conductance microscopy, conductive AFM, and two-terminal I-V measurements. Using this combination of measurements, we find that the conductivity of PIn/DNA nanowires is between 2.5 and 40 S cm(-1) at room temperature, which is substantially greater than that in previous reports on the bulk polyindole conductivity (typically 10(-2)-10(-1) S cm(-1)). The conductance at zero bias shows an Arrhenius-type of dependence on temperature over the range of 233 to 373 K, and the values observed upon heating and cooling are repeatable within 5%; this behavior is consistent with a hopping mechanism of conductivity.


Assuntos
DNA/química , Indóis/química , Substâncias Luminescentes/química , Nanofios/química , Polímeros/química , Animais , Bovinos , Condutividade Elétrica , Microscopia , Oxirredução , Silício/química , Dióxido de Silício/química , Análise Espectral , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa