Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 116, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095436

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) infections are considered a major public health problem, as the treatment options are restricted. Biofilm formation and the quorum sensing (QS) system play a pivotal role in S. aureus pathogenicity. Hence, this study was performed to explore the antibacterial effect of pyocyanin (PCN) on MRSA as well as its effect on MRSA biofilm and QS. RESULTS: Data revealed that PCN exhibited strong antibacterial activity against all test MRSA isolates (n = 30) with a MIC value equal to 8 µg/ml. About 88% of MRSA biofilms were eradicated by PCN treatment using the crystal violet assay. The disruption of MRSA biofilm was confirmed using confocal laser scanning microscopy, which showed a reduction in bacterial viability (approximately equal to 82%) and biofilm thickness (approximately equal to 60%). Additionally, the disruption of the formation of microcolonies and the disturbance of the connection between bacterial cells in the MRSA biofilm after PCN treatment were examined by scanning electron microscopy. The 1/2 and 1/4 MICs of PCN exerted promising anti-QS activity without affecting bacterial viability; Agr QS-dependent virulence factors (hemolysin, protease, and motility), and the expression of agrA gene, decreased after PCN treatment. The in silico analysis confirmed the binding of PCN to the AgrA protein active site, which blocked its action. The in vivo study using the rat wound infection model confirmed the ability of PCN to modulate the biofilm and QS of MRSA isolates. CONCLUSION: The extracted PCN seems to be a good candidate for treating MRSA infection through biofilm eradication and Agr QS inhibition.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Ratos , Animais , Piocianina , Staphylococcus aureus , Biofilmes , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
2.
Microb Cell Fact ; 22(1): 110, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291560

RESUMO

A subject of great interest is the bioprospecting of microorganisms and their bioactive byproducts, such as pigments. Microbial pigments have various benefits, including being safe to use due to their natural makeup, having therapeutic effects, and being produced all year round, regardless of the weather or location. Pseudomonas aeruginosa produces phenazine pigments that are crucial for interactions between Pseudomonas species and other living things. Pyocyanin pigment, which is synthesized by 90-95% of P. aeruginosa, has potent antibacterial, antioxidant, and anticancer properties. Herein, we will concentrate on the production and extraction of pyocyanin pigment and its biological use in different areas of biotechnology, engineering, and biology.


Assuntos
Pseudomonas aeruginosa , Piocianina , Pseudomonas , Antibacterianos/farmacologia , Antioxidantes/farmacologia
3.
Microb Cell Fact ; 21(1): 262, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528623

RESUMO

BACKGROUND: Pyocyanin, a specific extracellular secondary metabolite pigment produced by Pseudomonas aeruginosa, exhibits redox activity and has toxic effects on mammalian cells, making it a new and potent alternative for treating cancer. Breast cancer (BC) treatment is now defied by acquired and de novo resistance to chemotherapy, radiation, or targeted therapies. Therefore, the anticancer activity of purified and characterized pyocyanin was examined against BC in our study. RESULTS: The maximum production of pyocyanin (53 µg/ml) was achieved by incubation of the highest pyocyanin-producing P. aeruginosa strain (P32) in pH-adjusted peptone water supplemented with 3% cetrimide under shaking conditions at 37 °C for 3 days. The high purity of the extracted pyocyanin was proven by HPLC against standard pyocyanin. The stability of pyocyanin was affected by the solvent in which it was stored. Therefore, the purified pyocyanin extract was lyophilized to increase its shelf-life up to one year. Using the MTT assay, we reported, for the first time, the cytotoxic effect of pyocyanin against human breast adenocarcinoma (MCF-7) with IC50 = 15 µg/ml while it recorded a safe concentration against human peripheral blood mononuclear cells (PBMCs). The anticancer potential of pyocyanin against MCF-7 was associated with its apoptotic and necrotic activities which were confirmed qualitatively and quantitively using confocal laser scanning microscopy, inverted microscopy, and flow cytometry. Caspase-3 measurements, using real-time PCR and western blot, revealed that pyocyanin exerted its apoptotic activity against MCF-7 through caspase-3 activation. CONCLUSION: Our work demonstrated that pyocyanin may be an ideal anticancer candidate, specific to cancer cells, for treating MCF-7 by its necrotic and caspase-3-dependent apoptotic activities.


Assuntos
Adenocarcinoma , Neoplasias da Mama , Animais , Humanos , Feminino , Piocianina/metabolismo , Piocianina/farmacologia , Pseudomonas aeruginosa/metabolismo , Caspase 3/metabolismo , Células MCF-7 , Leucócitos Mononucleares/metabolismo , Neoplasias da Mama/tratamento farmacológico , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa