Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 22(5): 845-849, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33084210

RESUMO

Paralytic shellfish toxins (PSTs) are neurotoxic alkaloids produced by freshwater cyanobacteria and marine dinoflagellates. Due to their antagonism of voltage-gated sodium channels in excitable cells, certain analogues are of significant pharmacological interest. The biosynthesis of the parent compound, saxitoxin, is initiated with the formation of 4-amino-3-oxo-guanidinoheptane (ethyl ketone) by an unusual polyketide synthase-like enzyme, SxtA. We have heterologously expressed SxtA from Raphidiopsis raciborskii T3 in Escherichia coli and analysed its activity in vivo. Ethyl ketone and a truncated analogue, methyl ketone, were detected by HPLC-ESI-HRMS analysis, thus suggesting that SxtA has relaxed substrate specificity in vivo. The chemical structures of these products were further verified by tandem mass spectrometry and labelled-precursor feeding with [guanidino-15 N2 ] arginine and [1,2-13 C2 ] acetate. These results indicate that the reactions catalysed by SxtA could give rise to multiple PST variants, including analogues of ecological and pharmacological significance.


Assuntos
Cylindrospermopsis/metabolismo , Escherichia coli/metabolismo , Venenos/metabolismo , Saxitoxina/metabolismo , Canais de Sódio Disparados por Voltagem/química , Cylindrospermopsis/genética , Escherichia coli/genética , Saxitoxina/genética , Especificidade por Substrato
2.
BMC Microbiol ; 20(1): 35, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32070286

RESUMO

BACKGROUND: Dolichospermum circinale is a filamentous bloom-forming cyanobacterium responsible for biosynthesis of the paralytic shellfish toxins (PST), including saxitoxin. PSTs are neurotoxins and in their purified form are important analytical standards for monitoring the quality of water and seafood and biomedical research tools for studying neuronal sodium channels. More recently, PSTs have been recognised for their utility as local anaesthetics. Characterisation of the transcriptional elements within the saxitoxin (sxt) biosynthetic gene cluster (BGC) is a first step towards accessing these molecules for biotechnology. RESULTS: In D. circinale AWQC131C the sxt BGC is transcribed from two bidirectional promoter regions encoding five individual promoters. These promoters were identified experimentally using 5' RACE and their activity assessed via coupling to a lux reporter system in E. coli and Synechocystis sp. PCC 6803. Transcription of the predicted drug/metabolite transporter (DMT) encoded by sxtPER was found to initiate from two promoters, PsxtPER1 and PsxtPER2. In E. coli, strong expression of lux from PsxtP, PsxtD and PsxtPER1 was observed while expression from Porf24 and PsxtPER2 was remarkably weaker. In contrast, heterologous expression in Synechocystis sp. PCC 6803 showed that expression of lux from PsxtP, PsxtPER1, and Porf24 promoters was statistically higher compared to the non-promoter control, while PsxtD showed poor activity under the described conditions. CONCLUSIONS: Both of the heterologous hosts investigated in this study exhibited high expression levels from three of the five sxt promoters. These results indicate that the majority of the native sxt promoters appear active in different heterologous hosts, simplifying initial cloning efforts. Therefore, heterologous expression of the sxt BGC in either E. coli or Synechocystis could be a viable first option for producing PSTs for industrial or biomedical purposes.


Assuntos
Proteínas de Bactérias/genética , Cianobactérias/genética , Saxitoxina/biossíntese , Cianobactérias/metabolismo , Modelos Genéticos , Família Multigênica , Regiões Promotoras Genéticas , Saxitoxina/genética
3.
Appl Microbiol Biotechnol ; 103(11): 4633-4648, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30972463

RESUMO

Clostridium autoethanogenum and Clostridium ljungdahlii are physiologically and genetically very similar strict anaerobic acetogens capable of growth on carbon monoxide as sole carbon source. While exact nutritional requirements have not been reported, we observed that for growth, the addition of vitamins to media already containing yeast extract was required, an indication that these are fastidious microorganisms. Elimination of complex components and individual vitamins from the medium revealed that the only organic compounds required for growth were pantothenate, biotin and thiamine. Analysis of the genome sequences revealed that three genes were missing from pantothenate and thiamine biosynthetic pathways, and five genes were absent from the pathway for biotin biosynthesis. Prototrophy in C. autoethanogenum and C. ljungdahlii for pantothenate was obtained by the introduction of plasmids carrying the heterologous gene clusters panBCD from Clostridium acetobutylicum, and for thiamine by the introduction of the thiC-purF operon from Clostridium ragsdalei. Integration of panBCD into the chromosome through allele-coupled exchange also conveyed prototrophy. C. autoethanogenum was converted to biotin prototrophy with gene sets bioBDF and bioHCA from Desulfotomaculum nigrificans strain CO-1-SRB, on plasmid and integrated in the chromosome. The genes could be used as auxotrophic selection markers in recombinant DNA technology. Additionally, transformation with a subset of the genes for pantothenate biosynthesis extended selection options with the pantothenate precursors pantolactone and/or beta-alanine. Similarly, growth was obtained with the biotin precursor pimelate combined with genes bioYDA from C. acetobutylicum. The work raises questions whether alternative steps exist in biotin and thiamine biosynthesis pathways in these acetogens.


Assuntos
Clostridium/crescimento & desenvolvimento , Clostridium/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Vitaminas/biossíntese , Clostridium/genética , Meios de Cultura/química , Desulfotomaculum/genética , Expressão Gênica , Genes Bacterianos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
ACS Omega ; 9(25): 27618-27631, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38947807

RESUMO

Microcystins are hepatotoxic cyclic heptapeptides produced by some cyanobacterial species and usually contain the unusual ß-amino acid 3S-amino-9S-methoxy-2S,6,8S-trimethyl-10-phenyl-4E,6E-decadienoic acid (Adda) at position-5. The full microcystin gene cluster from Microcystis aeruginosa PCC 7806 has been expressed in Escherichia coli. In an earlier study, the engineered strain was shown to produce MC-LR and [d-Asp3]MC-LR, the main microcystins reported in cultures of M. aeruginosa PCC 7806. However, analysis of the engineered strain of E. coli using semitargeted liquid chromatography with high-resolution tandem mass spectrometry (LC-HRMS/MS) and thiol derivatization revealed the presence of 15 additional microcystin analogues, including four linear peptide variants and, in total, 12 variants with modifications to the Adda moiety. Four of the Adda-variants lacked the phenyl group at the Adda-terminus, a modification that has not previously been reported in cyanobacteria. Their HRMS/MS spectra contained the product-ion from Adda at m/z 135.1168, but the commonly observed product-ion at m/z 135.0804 from Adda-containing microcystins was almost completely absent. In contrast, three of the variants were missing a methyl group between C-2 and C-8 of the Adda moiety, and their LC-HRMS/MS spectra displayed the product-ion from Adda at m/z 135.0804. However, instead of the product-ion at m/z 135.1168, these three variants gave product-ions at m/z 121.1011. These observations, together with spectra from microcystin standards using in-source fragmentation, showed that the product-ion at m/z 135.1168 found in the HRMS/MS spectra of most microcystins originated from the C-2 to C-8 region of the Adda moiety. Identification of the fragmentation pathways for the Adda side chain will facilitate the detection of microcystins containing modifications in their Adda moieties that could otherwise easily be overlooked with standard LC-MS screening methods. Microcystin variants containing Abu at position-1 were also prominent components of the microcystin profile of the engineered bacterium. Microcystin variants with Abu1 or without the phenyl group on the Adda side chain were not detected in the original host cyanobacterium. This suggests not only that the microcystin synthase complex may be affected by substrate availability within its host organism but also that it possesses an unexpected degree of biosynthetic flexibility.

5.
Appl Environ Microbiol ; 77(15): 5467-75, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21685168

RESUMO

2,3-Butanediol (23BD) is a high-value chemical usually produced petrochemically but which can also be synthesized by some bacteria. To date, the best microbial 23BD production rates have been observed using pathogenic bacteria in fermentation systems that depend on sugars as the carbon and energy sources for product synthesis. Here we present evidence of 23BD production by three nonpathogenic acetogenic Clostridium species-Clostridium autoethanogenum, C. ljungdahlii, and C. ragsdalei-using carbon monoxide-containing industrial waste gases or syngas as the sole source of carbon and energy. Through an analysis of the C. ljungdahlii genome, the complete pathway from carbon monoxide to 23BD has been proposed. Homologues of the genes involved in this pathway were also confirmed for the other two species investigated. A gene expression study demonstrates a correlation between mRNA accumulation from 23BD biosynthetic genes and the onset of 23BD production, while a broader expression study of Wood-Ljungdahl pathway genes provides a transcription-level view of one of the oldest existing biochemical pathways.


Assuntos
Butileno Glicóis/metabolismo , Monóxido de Carbono/metabolismo , Clostridium/metabolismo , Gases/metabolismo , Resíduos Industriais , Redes e Vias Metabólicas , Sequência de Bases , Clostridium/genética , Metabolismo Energético , Fermentação , Perfilação da Expressão Gênica , Dados de Sequência Molecular , RNA Mensageiro/biossíntese , Análise de Sequência de DNA , Transcrição Gênica
6.
Mar Genomics ; 21: 1-12, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25482899

RESUMO

Cyanobacteria produce a vast array of natural products, some of which are toxic to human health, while others possess potential pharmaceutical activities. Genome mining enables the identification and characterisation of natural product gene clusters; however, the current number of cyanobacterial genomes remains low compared to other phyla. There has been a recent effort to rectify this issue by increasing the number of sequenced cyanobacterial genomes. This has enabled the identification of biosynthetic gene clusters for structurally diverse metabolites, including non-ribosomal peptides, polyketides, ribosomal peptides, UV-absorbing compounds, alkaloids, terpenes and fatty acids. While some of the identified biosynthetic gene clusters correlate with known metabolites, genome mining also highlights the number and diversity of clusters for which the product is unknown (referred to as orphan gene clusters). A number of bioinformatic tools have recently been developed in order to predict the products of orphan gene clusters; however, in some cases the complexity of the cyanobacterial pathways makes the prediction problematic. This can be overcome by the use of mass spectrometry-guided natural product genome mining, or heterologous expression. Application of these techniques to cyanobacterial natural product gene clusters will be explored.


Assuntos
Produtos Biológicos/metabolismo , Cianobactérias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano , Variação Genética , Genômica/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa