Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(6): e1012182, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38865414

RESUMO

Restrictions of cross-border mobility are typically used to prevent an emerging disease from entering a country in order to slow down its spread. However, such interventions can come with a significant societal cost and should thus be based on careful analysis and quantitative understanding on their effects. To this end, we model the influence of cross-border mobility on the spread of COVID-19 during 2020 in the neighbouring Nordic countries of Denmark, Finland, Norway and Sweden. We investigate the immediate impact of cross-border travel on disease spread and employ counterfactual scenarios to explore the cumulative effects of introducing additional infected individuals into a population during the ongoing epidemic. Our results indicate that the effect of inter-country mobility on epidemic growth is non-negligible essentially when there is sizeable mobility from a high prevalence country or countries to a low prevalence one. Our findings underscore the critical importance of accurate data and models on both epidemic progression and travel patterns in informing decisions related to inter-country mobility restrictions.


Assuntos
COVID-19 , SARS-CoV-2 , Viagem , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/prevenção & controle , Humanos , Países Escandinavos e Nórdicos/epidemiologia , Viagem/estatística & dados numéricos , Epidemias/estatística & dados numéricos , Epidemias/prevenção & controle , Pandemias/estatística & dados numéricos , Pandemias/prevenção & controle , Prevalência , Biologia Computacional , Dinamarca/epidemiologia
2.
Phys Rev Lett ; 130(15): 158202, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37115871

RESUMO

Multivalent ions in solutions with polyelectrolytes (PEs) induce electrostatic correlations that can drastically change ion distributions around the PEs and their mutual interactions. Using coarse-grained molecular dynamics simulations, we show how in addition to valency, ion shape and concentration can be harnessed as tools to control rigid like-charged PE-PE interactions. We demonstrate a correlation between the orientational ordering of aspherical ions and how they mediate the effective PE-PE attraction induced by multivalency. The interaction type, strength, and range can thus be externally controlled in ionic solutions. Our results can be used as generic guidelines to tune the self-assembly of like-charged polyelectrolytes by variation of the characteristics of the ions.

3.
PLoS Comput Biol ; 18(4): e1009974, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35389983

RESUMO

We evaluate the efficiency of various heuristic strategies for allocating vaccines against COVID-19 and compare them to strategies found using optimal control theory. Our approach is based on a mathematical model which tracks the spread of disease among different age groups and across different geographical regions, and we introduce a method to combine age-specific contact data to geographical movement data. As a case study, we model the epidemic in the population of mainland Finland utilizing mobility data from a major telecom operator. Our approach allows to determine which geographical regions and age groups should be targeted first in order to minimize the number of deaths. In the scenarios that we test, we find that distributing vaccines demographically and in an age-descending order is not optimal for minimizing deaths and the burden of disease. Instead, more lives could be saved by using strategies which emphasize high-incidence regions and distribute vaccines in parallel to multiple age groups. The level of emphasis that high-incidence regions should be given depends on the overall transmission rate in the population. This observation highlights the importance of updating the vaccination strategy when the effective reproduction number changes due to the general contact patterns changing and new virus variants entering.


Assuntos
COVID-19 , Vacinas , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2 , Vacinação/métodos
4.
Phys Chem Chem Phys ; 24(35): 21112-21121, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36018307

RESUMO

We use the recently developed soft-potential-enhanced Poisson-Boltzmann (SPB) theory to study the interaction between two parallel polyelectrolytes (PEs) in monovalent ionic solutions in the weak-coupling regime. The SPB theory is fitted to ion distributions from coarse-grained molecular dynamics (MD) simulations and benchmarked against all-atom MD modelling for poly(diallyldimethylammonium) (PDADMA). We show that the SPB theory is able to accurately capture the interactions between two PEs at distances beyond the PE radius. For PDADMA positional correlations between the charged groups lead to locally asymmetric PE charge and ion distributions. This gives rise to small deviations from the SPB prediction that appear as short-range oscillations in the potential of mean force. Our results suggest that the SPB theory can be an efficient way to model interactions in chemically specific complex PE systems.


Assuntos
Eletrólitos , Água , Eletrólitos/química , Íons , Simulação de Dinâmica Molecular , Polieletrólitos/química , Soluções , Água/química
5.
J Chem Phys ; 156(21): 214906, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35676125

RESUMO

We present a soft-potential-enhanced Poisson-Boltzmann (SPB) theory to efficiently capture ion distributions and electrostatic potential around rodlike charged macromolecules. The SPB model is calibrated with a coarse-grained particle-based model for polyelectrolytes (PEs) in monovalent salt solutions as well as compared to a full atomistic molecular dynamics simulation with the explicit solvent. We demonstrate that our modification enables the SPB theory to accurately predict monovalent ion distributions around a rodlike PE in a wide range of ion and charge distribution conditions in the weak-coupling regime. These include excess salt concentrations up to 1M and ion sizes ranging from small ions, such as Na+ or Cl-, to softer and larger ions with a size comparable to the PE diameter. The work provides a simple way to implement an enhancement that effectively captures the influence of ion size and species into the PB theory in the context of PEs in aqueous salt solutions.

6.
J Chem Phys ; 157(11): 114801, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36137808

RESUMO

We present our latest advancements of machine-learned potentials (MLPs) based on the neuroevolution potential (NEP) framework introduced in Fan et al. [Phys. Rev. B 104, 104309 (2021)] and their implementation in the open-source package gpumd. We increase the accuracy of NEP models both by improving the radial functions in the atomic-environment descriptor using a linear combination of Chebyshev basis functions and by extending the angular descriptor with some four-body and five-body contributions as in the atomic cluster expansion approach. We also detail our efficient implementation of the NEP approach in graphics processing units as well as our workflow for the construction of NEP models and demonstrate their application in large-scale atomistic simulations. By comparing to state-of-the-art MLPs, we show that the NEP approach not only achieves above-average accuracy but also is far more computationally efficient. These results demonstrate that the gpumd package is a promising tool for solving challenging problems requiring highly accurate, large-scale atomistic simulations. To enable the construction of MLPs using a minimal training set, we propose an active-learning scheme based on the latent space of a pre-trained NEP model. Finally, we introduce three separate Python packages, viz., gpyumd, calorine, and pynep, that enable the integration of gpumd into Python workflows.

7.
J Chem Phys ; 155(1): 014904, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241377

RESUMO

Self-assembly in natural and synthetic molecular systems can create complex aggregates or materials whose properties and functionalities rise from their internal structure and molecular arrangement. The key microscopic features that control such assemblies remain poorly understood, nevertheless. Using classical density functional theory, we demonstrate how the intrinsic length scales and their interplay in terms of interspecies molecular interactions can be used to tune soft matter self-assembly. We apply our strategy to two different soft binary mixtures to create guidelines for tuning intermolecular interactions that lead to transitions from a fully miscible, liquid-like uniform state to formation of simple and core-shell aggregates and mixed aggregate structures. Furthermore, we demonstrate how the interspecies interactions and system composition can be used to control concentration gradients of component species within these assemblies. The insight generated by this work contributes toward understanding and controlling soft multi-component self-assembly systems. Additionally, our results aid in understanding complex biological assemblies and their function and provide tools to engineer molecular interactions in order to control polymeric and protein-based materials, pharmaceutical formulations, and nanoparticle assemblies.


Assuntos
Teoria da Densidade Funcional , Soluções
8.
Soft Matter ; 15(7): 1684-1691, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30681686

RESUMO

Externally controlled motion of micro and nanomotors in a fluid environment constitutes a promising tool in biosensing, targeted delivery and environmental remediation. In particular, recent experiments have demonstrated that fuel-free propulsion can be achieved through the application of external magnetic fields on magnetic helically shaped structures. The magnetic interaction between helices and the rotating field induces a torque that rotates and propels them via the coupled rotational-translational motion. Recent works have shown that there exist certain optimal geometries of helical shapes for propulsion. However, experiments show that controlled motion remains a challenge at the nanoscale due to Brownian motion that interferes with the deterministic motion and makes it difficult to achieve controlled steering. In the present work we employ quantitatively accurate simulation methodology to design a setup for which magnetic nanohelices of 30 nm in radius and 180 nm in length (corresponding to previously determined optimal length to radius ratio of 6), with and without cargo, can be accurately propelled and steered in the presence of thermal fluctuations. In particular, we demonstrate fast transport of such nanomotors and devise protocols in manipulating external fields to achieve directionally controlled steering at biologically relevant temperatures.

9.
J Chem Phys ; 151(23): 234105, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31864248

RESUMO

Nonequilibrium molecular dynamics (NEMD) has been extensively used to study thermal transport at various length scales in many materials. In this method, two local thermostats at different temperatures are used to generate a nonequilibrium steady state with a constant heat flux. Conventionally, the thermal conductivity of a finite system is calculated as the ratio between the heat flux and the temperature gradient extracted from the linear part of the temperature profile away from the local thermostats. Here, we show that, with a proper choice of the thermostat, the nonlinear part of the temperature profile should actually not be excluded in thermal transport calculations. We compare NEMD results against those from the atomistic Green's function method in the ballistic regime and those from the homogeneous nonequilibrium molecular dynamics method in the ballistic-to-diffusive regime. These comparisons suggest that in all the transport regimes, one should directly calculate the thermal conductance from the temperature difference between the heat source and sink and, if needed, convert it into the thermal conductivity by multiplying it with the system length. Furthermore, we find that the Langevin thermostat outperforms the Nosé-Hoover (chain) thermostat in NEMD simulations because of its stochastic and local nature. We show that this is particularly important for studying asymmetric carbon-based nanostructures, for which the Nosé-Hoover thermostat can produce artifacts leading to unphysical thermal rectification.

10.
Phys Chem Chem Phys ; 20(38): 24602-24612, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30229758

RESUMO

We use a phase field crystal model to generate large-scale bicrystalline and polycrystalline single-layer hexagonal boron nitride (h-BN) samples and employ molecular dynamics (MD) simulations with the Tersoff many-body potential to study their heat transport properties. The Kapitza thermal resistance across individual h-BN grain boundaries is calculated using the inhomogeneous nonequilibrium MD method. The resistance displays strong dependence on the tilt angle, the line tension and the defect density of the grain boundaries. We also calculate the thermal conductivity of pristine h-BN and polycrystalline h-BN with different grain sizes using an efficient homogeneous nonequilibrium MD method. The in-plane and the out-of-plane (flexural) phonons exhibit different grain size scalings of the thermal conductivity in polycrystalline h-BN and the extracted Kapitza conductance is close to that of large-tilt-angle grain boundaries in bicrystals.

11.
Nano Lett ; 17(10): 5919-5924, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28877440

RESUMO

Grain boundaries in graphene are inherent in wafer-scale samples prepared by chemical vapor deposition. They can strongly influence the mechanical properties and electronic and heat transport in graphene. In this work, we employ extensive molecular dynamics simulations to study thermal transport in large suspended polycrystalline graphene samples. Samples of different controlled grain sizes are prepared by a recently developed efficient multiscale approach based on the phase field crystal model. In contrast to previous works, our results show that the scaling of the thermal conductivity with the grain size implies bimodal behavior with two effective Kapitza lengths. The scaling is dominated by the out-of-plane (flexural) phonons with a Kapitza length that is an order of magnitude larger than that of the in-plane phonons. We also show that, to get quantitative agreement with the most recent experiments, quantum corrections need to be applied to both the Kapitza conductance of grain boundaries and the thermal conductivity of pristine graphene, and the corresponding Kapitza lengths must be renormalized accordingly.

12.
Soft Matter ; 13(21): 3909-3917, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28488709

RESUMO

We employ the reverse non-equilibrium molecular dynamics method (RNEMD) of Müller-Plathe [Phys. Rev. E, 1999, 59, 4894] to calculate the shear viscosity of colloidal suspensions within the stochastic rotation dynamics-molecular dynamics (SRD-MD) simulation method. We examine the influence of different coupling schemes in SRD-MD on the colloidal volume fraction ϕc dependent viscosity from the dilute limit up to ϕc = 0.3. Our results demonstrate that the RNEMD method is a robust and reliable method for calculating rheological properties of colloidal suspensions. To obtain quantitatively accurate results beyond the dilute regime, the hydrodynamic interactions between the effective fluid particles in the SRD and the MD colloidal particles must be carefully considered in the coupling scheme. We benchmark the method by comparing with the hard sphere suspension case, and then calculate relative viscosities for colloids with mutually attractive interactions. We show that the viscosity displays a sharp increase at the onset of aggregation of the colloidal particles with increasing volume fraction and attraction.

13.
Soft Matter ; 13(11): 2148-2154, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28225092

RESUMO

Controlling the motion of nano and microscale objects in a fluid environment is a key factor in designing optimized tiny machines that perform mechanical tasks such as transport of drugs or genetic material in cells, fluid mixing to accelerate chemical reactions, and cargo transport in microfluidic chips. Directed motion is made possible by the coupled translational and rotational motion of asymmetric particles. A current challenge in achieving directed and controlled motion at the nanoscale lies in overcoming random Brownian motion due to thermal fluctuations in the fluid. We use a hybrid lattice-Boltzmann molecular dynamics method with full hydrodynamic interactions and thermal fluctuations to demonstrate that controlled propulsion of individual nanohelices in an aqueous environment is possible. We optimize the propulsion velocity and the efficiency of externally driven nanohelices. We quantify the importance of the thermal effects on the directed motion by calculating the Péclet number for various shapes, number of turns and pitch lengths of the helices. Consistent with the experimental microscale separation of chiral objects, our results indicate that in the presence of thermal fluctuations at Péclet numbers >10, chiral particles follow the direction of propagation according to its handedness and the direction of the applied torque making separation of chiral particles possible at the nanoscale. Our results provide criteria for the design and control of helical machines at the nanoscale.

14.
J Chem Phys ; 145(9): 094901, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27609008

RESUMO

The recrossing correction to the transition state theory estimate of a thermal rate can be difficult to calculate when the energy barrier is flat. This problem arises, for example, in polymer escape if the polymer is long enough to stretch between the initial and final state energy wells while the polymer beads undergo diffusive motion back and forth over the barrier. We present an efficient method for evaluating the correction factor by constructing a sequence of hyperplanes starting at the transition state and calculating the probability that the system advances from one hyperplane to another towards the product. This is analogous to what is done in forward flux sampling except that there the hyperplane sequence starts at the initial state. The method is applied to the escape of polymers with up to 64 beads from a potential well. For high temperature, the results are compared with direct Langevin dynamics simulations as well as forward flux sampling and excellent agreement between the three rate estimates is found. The use of a sequence of hyperplanes in the evaluation of the recrossing correction speeds up the calculation by an order of magnitude as compared with the traditional approach. As the temperature is lowered, the direct Langevin dynamics simulations as well as the forward flux simulations become computationally too demanding, while the harmonic transition state theory estimate corrected for recrossings can be calculated without significant increase in the computational effort.

15.
J Chem Phys ; 142(22): 224906, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-26071730

RESUMO

The rate of escape of an ideal bead-spring polymer in a symmetric double-well potential is calculated using transition state theory (TST) and the results compared with direct dynamical simulations. The minimum energy path of the transitions becomes flat and the dynamics diffusive for long polymers making the Kramers-Langer estimate poor. However, TST with dynamical corrections based on short time trajectories started at the transition state gives rate constant estimates that agree within a factor of two with the molecular dynamics simulations over a wide range of bead coupling constants and polymer lengths. The computational effort required by the TST approach does not depend on the escape rate and is much smaller than that required by molecular dynamics simulations.

16.
J Chem Phys ; 143(7): 074905, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26298154

RESUMO

We develop a theory for polymer translocation driven by a time-dependent force through an oscillating nanopore. To this end, we extend the iso-flux tension propagation theory [Sarabadani et al., J. Chem. Phys. 141, 214907 (2014)] for such a setup. We assume that the external driving force in the pore has a component oscillating in time, and the flickering pore is similarly described by an oscillating term in the pore friction. In addition to numerically solving the model, we derive analytical approximations that are in good agreement with the numerical simulations. Our results show that by controlling either the force or pore oscillations, the translocation process can be either sped up or slowed down depending on the frequency of the oscillations and the characteristic time scale of the process. We also show that while in the low and high frequency limits, the translocation time τ follows the established scaling relation with respect to chain length N0, in the intermediate frequency regime small periodic, fluctuations can have drastic effects on the dynamical scaling. The results can be easily generalized for non-periodic oscillations and elucidate the role of time dependent forces and pore oscillations in driven polymer translocation.


Assuntos
Modelos Teóricos , Nanoporos , Polímeros/química , Simulação por Computador , Fricção , Periodicidade
17.
Phys Rev Lett ; 112(11): 118301, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24702423

RESUMO

We examine pressure-driven nonequilibrium transport of linear, circular, and star polymers through a nanochannel containing a rectangular pit with full hydrodynamic interactions and thermal fluctuations. We demonstrate that with sufficiently small pressure differences, there is contour length-dependent entropic trapping of the polymer in the pit when the pit and the polymer sizes are compatible. This is due to competition between flow and chain relaxation in the pit, which leads to a nonmonotonic dependence of the polymer mobility on its size and should aid in the design of nanofiltration devices based on the polymer size and shape.


Assuntos
Biopolímeros/química , Filtração/métodos , Técnicas Analíticas Microfluídicas/métodos , Modelos Químicos , Nanoestruturas/química , Nanotecnologia/métodos , Filtração/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Nanotecnologia/instrumentação , Tamanho da Partícula , Relação Estrutura-Atividade
18.
Soft Matter ; 10(45): 9016-37, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25301107

RESUMO

Probably no other field of statistical physics at the borderline of soft matter and biological physics has caused such a flurry of papers as polymer translocation since the 1994 landmark paper by Bezrukov, Vodyanoy, and Parsegian and the study of Kasianowicz in 1996. Experiments, simulations, and theoretical approaches are still contributing novel insights to date, while no universal consensus on the statistical understanding of polymer translocation has been reached. We here collect the published results, in particular, the famous-infamous debate on the scaling exponents governing the translocation process. We put these results into perspective and discuss where the field is going. In particular, we argue that the phenomenon of polymer translocation is non-universal and highly sensitive to the exact specifications of the models and experiments used towards its analysis.


Assuntos
Biopolímeros/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Transporte Biológico , DNA/metabolismo , Eletrólitos/metabolismo , Porosidade
19.
J Chem Phys ; 140(5): 054907, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24511979

RESUMO

The rate of escape of polymers from a two-dimensionally confining potential well has been evaluated using self-avoiding as well as ideal chain representations of varying length, up to 80 beads. Long timescale Langevin trajectories were calculated using the path integral hyperdynamics method to evaluate the escape rate. A minimum is found in the rate for self-avoiding polymers of intermediate length while the escape rate decreases monotonically with polymer length for ideal polymers. The increase in the rate for long, self-avoiding polymers is ascribed to crowding in the potential well which reduces the free energy escape barrier. An effective potential curve obtained using the centroid as an independent variable was evaluated by thermodynamic averaging and Kramers rate theory then applied to estimate the escape rate. While the qualitative features are well reproduced by this approach, it significantly overestimates the rate, especially for the longer polymers. The reason for this is illustrated by constructing a two-dimensional effective energy surface using the radius of gyration as well as the centroid as controlled variables. This shows that the description of a transition state dividing surface using only the centroid fails to confine the system to the region corresponding to the free energy barrier and this problem becomes more pronounced the longer the polymer is. A proper definition of a transition state for polymer escape needs to take into account the shape as well as the location of the polymer.


Assuntos
Polímeros/química , Termodinâmica
20.
J Chem Phys ; 141(21): 214907, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25481169

RESUMO

We investigate the dynamics of pore-driven polymer translocation by theoretical analysis and molecular dynamics (MD) simulations. Using the tension propagation theory within the constant flux approximation we derive an explicit equation of motion for the tension front. From this we derive a scaling relation for the average translocation time τ, which captures the asymptotic result τ∝N0(1+ν), where N0 is the chain length and ν is the Flory exponent. In addition, we derive the leading correction-to-scaling term to τ and show that all terms of order N0(2ν) exactly cancel out, leaving only a finite-chain length correction term due to the effective pore friction, which is linearly proportional to N0. We use the model to numerically include fluctuations in the initial configuration of the polymer chain in addition to thermal noise. We show that when the cis side fluctuations are properly accounted for, the model not only reproduces previously known results but also considerably improves the estimates of the monomer waiting time distribution and the time evolution of the translocation coordinate s(t), showing excellent agreement with MD simulations.


Assuntos
Movimento (Física) , Polímeros/química , Fricção , Conformação Molecular , Simulação de Dinâmica Molecular , Porosidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa