Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 8(3): e1002537, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22396657

RESUMO

Mutations in Pten-induced kinase 1 (PINK1) are linked to early-onset familial Parkinson's disease (FPD). PINK1 has previously been implicated in mitochondrial fission/fusion dynamics, quality control, and electron transport chain function. However, it is not clear how these processes are interconnected and whether they are sufficient to explain all aspects of PINK1 pathogenesis. Here we show that PINK1 also controls mitochondrial motility. In Drosophila, downregulation of dMiro or other components of the mitochondrial transport machinery rescued dPINK1 mutant phenotypes in the muscle and dopaminergic (DA) neurons, whereas dMiro overexpression alone caused DA neuron loss. dMiro protein level was increased in dPINK1 mutant but decreased in dPINK1 or dParkin overexpression conditions. In Drosophila larval motor neurons, overexpression of dPINK1 inhibited axonal mitochondria transport in both anterograde and retrograde directions, whereas dPINK1 knockdown promoted anterograde transport. In HeLa cells, overexpressed hPINK1 worked together with hParkin, another FPD gene, to regulate the ubiquitination and degradation of hMiro1 and hMiro2, apparently in a Ser-156 phosphorylation-independent manner. Also in HeLa cells, loss of hMiro promoted the perinuclear clustering of mitochondria and facilitated autophagy of damaged mitochondria, effects previously associated with activation of the PINK1/Parkin pathway. These newly identified functions of PINK1/Parkin and Miro in mitochondrial transport and mitophagy contribute to our understanding of the complex interplays in mitochondrial quality control that are critically involved in PD pathogenesis, and they may explain the peripheral neuropathy symptoms seen in some PD patients carrying particular PINK1 or Parkin mutations. Moreover, the different effects of loss of PINK1 function on Miro protein level in Drosophila and mouse cells may offer one explanation of the distinct phenotypic manifestations of PINK1 mutants in these two species.


Assuntos
Transporte Axonal , Proteínas de Drosophila/genética , Drosophila , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas rho de Ligação ao GTP/genética , Animais , Autofagia/genética , Transporte Axonal/genética , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Proteínas Mutantes/metabolismo , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ionóforos de Próton/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
2.
J Biol Chem ; 288(2): 1250-65, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23105095

RESUMO

Vitamin A (retinol) is absorbed in the small intestine, stored in liver, and secreted into circulation bound to serum retinol-binding protein (RBP4). Circulating retinol may be taken up by extrahepatic tissues or recycled back to liver multiple times before it is finally metabolized or degraded. Liver exhibits high affinity binding sites for RBP4, but specific receptors have not been identified. The only known high affinity receptor for RBP4, Stra6, is not expressed in the liver. Here we report discovery of RBP4 receptor-2 (RBPR2), a novel retinol transporter expressed primarily in liver and intestine and induced in adipose tissue of obese mice. RBPR2 is structurally related to Stra6 and highly conserved in vertebrates, including humans. Expression of RBPR2 in cultured cells confers high affinity RBP4 binding and retinol transport, and RBPR2 knockdown reduces RBP4 binding/retinol transport. RBPR2 expression is suppressed by retinol and retinoic acid and correlates inversely with liver retinol stores in vivo. We conclude that RBPR2 is a novel retinol transporter that potentially regulates retinol homeostasis in liver and other tissues. In addition, expression of RBPR2 in liver and fat suggests a possible role in mediating established metabolic actions of RBP4 in those tissues.


Assuntos
Proteínas de Transporte/metabolismo , Fígado/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Clonagem Molecular , Primers do DNA , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa