Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Physiology (Bethesda) ; 39(2): 98-125, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051123

RESUMO

The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.


Assuntos
Diabetes Mellitus , Doenças Metabólicas , Humanos , Diabetes Mellitus/metabolismo , Tecido Adiposo/metabolismo , Homeostase , Doenças Metabólicas/metabolismo , Transdução de Sinais
2.
J Cell Physiol ; 237(2): 1418-1428, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668208

RESUMO

Mechanisms involved in the development of intervertebral disc (IVD) degeneration are only partially known, thus making the implementation of effective therapies very difficult. In this study, we investigated P2X7 purinergic receptor (P2X7R), NLRP3 inflammasome, and interleukin (IL)-1ß expression in IVD specimens at different stages of disease progression, and during the in vitro dedifferentiation process of the primary cells derived thereof. We found that P2X7R, NLRP3, and IL-1ß expression was higher in the IVD samples at a more advanced stage of degeneration and in the expanded IVD cells in culture which partially recapitulated the in vivo degeneration process. In IVD cells, the P2X7R showed a striking nuclear localization, while NLRP3 was mainly cytoplasmic. Stimulation with the semiselective P2X7R agonist benzoyl ATP together with lipopolysaccharide treatment triggered P2X7R transfer to the cytoplasm and P2X7R/NLRP3 colocalization. Taken together, these findings support pathophysiological evidence that the degenerated disc is a highly inflamed microenvironment and highlight the P2X7R/NLRP3 axis as a suitable therapeutic target. The immunohistochemical analysis and the assessment of subcellular localization revealed a substantial expression of P2X7R also in normal disc tissue. This gives us the opportunity to contribute to the few studies performed in natively expressed human P2X7R so far, and to understand the possible physiological ATP-mediated P2X7R homeostasis signaling. Therefore, collectively, our findings may offer a new perspective and pave the way for the exploration of a role of P2X7R-mediated purinergic signaling in IVD metabolism that goes beyond its involvement in inflammation.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/metabolismo , Humanos , Inflamassomos/metabolismo , Disco Intervertebral/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores Purinérgicos P2X7/genética
3.
BMC Biol ; 19(1): 40, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658023

RESUMO

BACKGROUND: Insulin secretion from the pancreatic ß-cell is finely modulated by different signals to allow an adequate control of glucose homeostasis. Incretin hormones such as glucagon-like peptide-1 (GLP-1) act as key physiological potentiators of insulin release through binding to the G protein-coupled receptor GLP-1R. Another key regulator of insulin signaling is the Ser/Thr kinase G protein-coupled receptor kinase 2 (GRK2). However, whether GRK2 affects insulin secretion or if GRK2 can control incretin actions in vivo remains to be analyzed. RESULTS: Using GRK2 hemizygous mice, isolated pancreatic islets, and model ß-cell lines, we have uncovered a relevant physiological role for GRK2 as a regulator of incretin-mediated insulin secretion in vivo. Feeding, oral glucose gavage, or administration of GLP-1R agonists in animals with reduced GRK2 levels (GRK2+/- mice) resulted in enhanced early phase insulin release without affecting late phase secretion. In contrast, intraperitoneal glucose-induced insulin release was not affected. This effect was recapitulated in isolated islets and correlated with the increased size or priming efficacy of the readily releasable pool (RRP) of insulin granules that was observed in GRK2+/- mice. Using nanoBRET in ß-cell lines, we found that stimulation of GLP-1R promoted GRK2 association to this receptor and that GRK2 protein and kinase activity were required for subsequent ß-arrestin recruitment. CONCLUSIONS: Overall, our data suggest that GRK2 is an important negative modulator of GLP-1R-mediated insulin secretion and that GRK2-interfering strategies may favor ß-cell insulin secretion specifically during the early phase, an effect that may carry interesting therapeutic applications.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/genética , Regulação da Expressão Gênica , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Secreção de Insulina/genética , Animais , Linhagem Celular , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos
4.
FASEB J ; 34(1): 399-409, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914606

RESUMO

The liver plays a key role during fasting to maintain energy homeostasis and euglycemia via metabolic processes mainly orchestrated by the insulin/glucagon ratio. We report here that fasting or calorie restriction protocols in C57BL6 mice promote a marked decrease in the hepatic protein levels of G protein-coupled receptor kinase 2 (GRK2), an important negative modulator of both G protein-coupled receptors (GPCRs) and insulin signaling. Such downregulation of GRK2 levels is liver-specific and can be rapidly reversed by refeeding. We find that autophagy, and not the proteasome, represents the main mechanism implicated in fasting-induced GRK2 degradation in the liver in vivo. Reducing GRK2 levels in murine primary hepatocytes facilitates glucagon-induced glucose production and enhances the expression of the key gluconeogenic enzyme Pck1. Conversely, preventing full downregulation of hepatic GRK2 during fasting using adenovirus-driven overexpression of this kinase in the liver leads to glycogen accumulation, decreased glycemia, and hampered glucagon-induced gluconeogenesis, thus preventing a proper and complete adaptation to nutrient deprivation. Overall, our data indicate that physiological fasting-induced downregulation of GRK2 in the liver is key for allowing complete glucagon-mediated responses and efficient metabolic adaptation to fasting in vivo.


Assuntos
Adaptação Biológica/efeitos dos fármacos , Autofagia , Jejum , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Glucagon/farmacologia , Fígado/metabolismo , Animais , Quinase 2 de Receptor Acoplado a Proteína G/genética , Fármacos Gastrointestinais/farmacologia , Homeostase , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
5.
Cell Mol Life Sci ; 77(23): 4957-4976, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31927610

RESUMO

Macrophages are key effector cells in obesity-associated inflammation. G protein-coupled receptor kinase 2 (GRK2) is highly expressed in different immune cell types. Using LysM-GRK2+/- mice, we uncover that a reduction of GRK2 levels in myeloid cells prevents the development of glucose intolerance and hyperglycemia after a high fat diet (HFD) through modulation of the macrophage pro-inflammatory profile. Low levels of myeloid GRK2 confer protection against hepatic insulin resistance, steatosis and inflammation. In adipose tissue, pro-inflammatory cytokines are reduced and insulin signaling is preserved. Macrophages from LysM-GRK2+/- mice secrete less pro-inflammatory cytokines when stimulated with lipopolysaccharide (LPS) and their conditioned media has a reduced pathological influence in cultured adipocytes or naïve bone marrow-derived macrophages. Our data indicate that reducing GRK2 levels in myeloid cells, by attenuating pro-inflammatory features of macrophages, has a relevant impact in adipose-liver crosstalk, thus preventing high fat diet-induced metabolic alterations.


Assuntos
Tecido Adiposo/metabolismo , Dieta Hiperlipídica , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Fígado/metabolismo , Células Mieloides/metabolismo , Obesidade/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo Branco/patologia , Animais , Meios de Cultivo Condicionados/farmacologia , Citoproteção/efeitos dos fármacos , Fígado Gorduroso/complicações , Fígado Gorduroso/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Glucose/metabolismo , Intolerância à Glucose/metabolismo , Hipertrofia , Inflamação/patologia , Insulina/metabolismo , Resistência à Insulina , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Células Mieloides/efeitos dos fármacos , Obesidade/complicações , Transdução de Sinais/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
6.
Am J Hum Biol ; 32(1): e23371, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31859435

RESUMO

OBJECTIVES: The gut microbiota varies across human populations. The first years of life are a critical period in its development. While delivery mode and diet contribute to observed variation, the additional contribution of specific environmental factors remains poorly understood. One factor is waterborne enteric pathogen exposure. In this pilot study, we explore the relationship between household water security and the gut microbiota of children. METHODS: From Nicaraguan households (n = 39), we collected drinking water samples, as well as fecal samples from children aged one month to 5.99 years (n = 53). We tested water samples for total coliforms (CFU/mL) and the presence of common enteric pathogens. Composition and diversity of the gut microbiota were characterized by 16S rRNA sequencing. Households were classified as having drinking water that was "low" (<29 CFU/mL) or "high" (≥29 CFU/mL) in coliforms. We used permutational analyses of variance and Mann-Whitney U-tests to identify differences in the composition and diversity of the gut microbiota of children living in these two home types. RESULTS: Insecure access led households to store drinking water and 85% tested positive for coliforms. High concentrations of Salmonella and Campylobacter were found in water and fecal samples. Controlling for age, the gut microbiota of children from high coliform homes were compositionally different and less diverse than those from low coliform homes. CONCLUSIONS: Results indicate that research exploring the ways water insecurity affects human biology should consider the gut microbiome and that investigations of inter-population variation in the gut microbial community of children should consider pathogen exposure and infection.


Assuntos
Abastecimento de Alimentos , Microbioma Gastrointestinal , População Rural/estatística & dados numéricos , Qualidade da Água , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Nicarágua , Projetos Piloto
7.
Crit Rev Food Sci Nutr ; 59(4): 626-638, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28956621

RESUMO

Tart cherries are increasingly popular due to purported health benefits. This Prunus cesarus species is cultivated worldwide, and its market has increased significantly in the last two decades due to improvements in agricultural practices and food processing technology. Tart cherries are rich in polyphenols, with a very specific profile combining anthocyanins and flavonols (berries-like) and chlorogenic acid (coffee-like). Tart cherries have been suggested to exert several potentially beneficial health effects including: lowering blood pressure, modulating blood glucose, enhancing cognitive function, protecting against oxidative stress and reducing inflammation. Studies focusing on tart cherry consumption have demonstrated particular benefits in recovery from exercise-induced muscle damage and diabetes associated parameters. However, the bioconversion of tart cherry polyphenols by resident colonic microbiota has never been considered, considerably reducing the impact of in vitro studies that have relied on fruit polyphenol extracts. In vitro and in vivo gut microbiota and metabolome studies are necessary to reinforce health claims linked to tart cherries consumption.


Assuntos
Frutas/química , Trato Gastrointestinal/metabolismo , Promoção da Saúde , Compostos Fitoquímicos/farmacocinética , Prunus avium/química , Anti-Inflamatórios , Anti-Hipertensivos , Bebidas , Ácido Clorogênico/análise , Cognição/efeitos dos fármacos , Flavonoides/análise , Manipulação de Alimentos/métodos , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Humanos , Hipoglicemiantes , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Polifenóis/metabolismo , Polifenóis/farmacocinética
8.
J Digit Imaging ; 32(3): 521-533, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30402669

RESUMO

We propose a software platform that integrates methods and tools for multi-objective parameter auto-tuning in tissue image segmentation workflows. The goal of our work is to provide an approach for improving the accuracy of nucleus/cell segmentation pipelines by tuning their input parameters. The shape, size, and texture features of nuclei in tissue are important biomarkers for disease prognosis, and accurate computation of these features depends on accurate delineation of boundaries of nuclei. Input parameters in many nucleus segmentation workflows affect segmentation accuracy and have to be tuned for optimal performance. This is a time-consuming and computationally expensive process; automating this step facilitates more robust image segmentation workflows and enables more efficient application of image analysis in large image datasets. Our software platform adjusts the parameters of a nuclear segmentation algorithm to maximize the quality of image segmentation results while minimizing the execution time. It implements several optimization methods to search the parameter space efficiently. In addition, the methodology is developed to execute on high-performance computing systems to reduce the execution time of the parameter tuning phase. These capabilities are packaged in a Docker container for easy deployment and can be used through a friendly interface extension in 3D Slicer. Our results using three real-world image segmentation workflows demonstrate that the proposed solution is able to (1) search a small fraction (about 100 points) of the parameter space, which contains billions to trillions of points, and improve the quality of segmentation output by × 1.20, × 1.29, and × 1.29, on average; (2) decrease the execution time of a segmentation workflow by up to 11.79× while improving output quality; and (3) effectively use parallel systems to accelerate parameter tuning and segmentation phases.


Assuntos
Núcleo Celular , Rastreamento de Células/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Software , Interface Usuário-Computador , Fluxo de Trabalho
9.
Bioinformatics ; 33(7): 1064-1072, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062445

RESUMO

Motivation: Sensitivity analysis and parameter tuning are important processes in large-scale image analysis. They are very costly because the image analysis workflows are required to be executed several times to systematically correlate output variations with parameter changes or to tune parameters. An integrated solution with minimum user interaction that uses effective methodologies and high performance computing is required to scale these studies to large imaging datasets and expensive analysis workflows. Results: The experiments with two segmentation workflows show that the proposed approach can (i) quickly identify and prune parameters that are non-influential; (ii) search a small fraction (about 100 points) of the parameter search space with billions to trillions of points and improve the quality of segmentation results (Dice and Jaccard metrics) by as much as 1.42× compared to the results from the default parameters; (iii) attain good scalability on a high performance cluster with several effective optimizations. Conclusions: Our work demonstrates the feasibility of performing sensitivity analyses, parameter studies and auto-tuning with large datasets. The proposed framework can enable the quantification of error estimations and output variations in image segmentation pipelines. Availability and Implementation: Source code: https://github.com/SBU-BMI/region-templates/ . Contact: teodoro@unb.br. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Humanos
10.
Radiat Environ Biophys ; 57(4): 419-426, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30343431

RESUMO

In rodent studies, the gut microbiota has been implicated in facilitating both radioresistance, by protecting the epithelium from apoptotic responses and radiosensitivity, inducing endothelial apoptotic responses. Despite the observation that large animal models, such as the Chinese Rhesus macaque and the Gottingen Minipig, demonstrate similarity to human physiologic responses to radiation, little is known about radiation-induced changes of the gut microbiome in these models. To compare the two models, we used bioequivalent radiation doses which resulted in an LD50 for Gottingen Minipigs and Chinese Rhesus macaques, 1.9 Gy and 6.8 Gy, respectively. Fecal samples taken prior and 3 days post-radiation were used for 16S rRNA gene sequence amplicon high throughput sequencing (Illumina MiSeq). Baseline gut microbiota profiles were dissimilar between minipigs and rhesus macaques. Irradiation profoundly impacted gut microbiota profiles in both animals. Significant increases of intracellular symbionts were common to both models and to reported changes in rodents suggesting universality of these findings post-radiation. Remarkably, opposite dynamics were observed for the main phyla, with increase of Firmicutes and decrease of Bacteroidetes and Proteobacteria in minipigs but with enrichment of Bacteroidetes in rhesus macaques. Minipig changes in magnitude and in variety of species affected were more extensive than those observed in rhesus macaques. This pilot study provides an important first step in comparing the radiosensitive pig model to the comparatively more radioresistant macaque model, for the identification of microbial elements which may influence radiosensitivity.


Assuntos
Síndrome Aguda da Radiação/etiologia , Síndrome Aguda da Radiação/microbiologia , Microbioma Gastrointestinal/efeitos da radiação , Exposição à Radiação/efeitos adversos , Animais , Modelos Animais de Doenças , Estimativa de Kaplan-Meier , Macaca mulatta , Suínos , Porco Miniatura , Equivalência Terapêutica
12.
Bioinformatics ; 32(8): 1238-40, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26704597

RESUMO

MOTIVATION: Structured RNAs can be hard to search for as they often are not well conserved in their primary structure and are local in their genomic or transcriptomic context. Thus, the need for tools which in particular can make local structural alignments of RNAs is only increasing. RESULTS: To meet the demand for both large-scale screens and hands on analysis through web servers, we present a new multithreaded version of Foldalign. We substantially improve execution time while maintaining all previous functionalities, including carrying out local structural alignments of sequences with low similarity. Furthermore, the improvements allow for comparing longer RNAs and increasing the sequence length. For example, lengths in the range 2000-6000 nucleotides improve execution up to a factor of five. AVAILABILITY AND IMPLEMENTATION: The Foldalign software and the web server are available at http://rth.dk/resources/foldalign CONTACT: gorodkin@rth.dk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA/química , Alinhamento de Sequência/métodos , Análise de Sequência de RNA/métodos , Software , Transcriptoma
13.
An Acad Bras Cienc ; 89(3 Suppl): 2181-2188, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28746618

RESUMO

The objective of this study was to identify thyroid hormones and to examine their putative site of synthesis in Achatina fulica snails. For this purpose, radioimmunoassays were performed for T3 and T4 before and after long starvation with or without hemolymph deproteinization. Sodium/iodide symporter activity in vivo was analyzed through 125I administration with and without KClO4 pretreatment. Only T4 was detected, and its concentration decreased due to starvation or deproteinization. However, high-performance liquid chromatography analysis also showed the presence of T2 and T3 apart from T4, but rT3 was not detected in the A. fulica hemolymph. The sodium/iodide symporter activity was greater in cerebral ganglia than digestive gland, but KClO4 treatment did not inhibit iodide uptake in any of the tissues analyzed. Altogether, our data confirm for the first time the presence of thyroid hormones in A. fulica snails and suggest their participation in the metabolism control in this species, although the putative site of hormone biosynthesis remains to be elucidated.


Assuntos
Caramujos/química , Tiroxina/análise , Animais , Transporte Biológico , Cromatografia Líquida de Alta Pressão , Hemolinfa , Simportadores de Cloreto de Sódio , Tiroxina/metabolismo
14.
Cardiovasc Diabetol ; 15(1): 155, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27832814

RESUMO

BACKGROUND: The leading cause of death among the obese population is heart failure and stroke prompted by structural and functional changes in the heart. The molecular mechanisms that underlie obesity-related cardiac remodeling are complex, and include hemodynamic and metabolic alterations that ultimately affect the functionality of the myocardium. G protein-coupled receptor kinase 2 (GRK2) is an ubiquitous kinase able to desensitize the active form of several G protein-coupled receptors (GPCR) and is known to play an important role in cardiac GPCR modulation. GRK2 has also been recently identified as a negative modulator of insulin signaling and systemic insulin resistance. METHODS: We investigated the effects elicited by GRK2 downregulation in obesity-related cardiac remodeling. For this aim, we used  9 month-old wild type (WT) and GRK2+/- mice, which display circa 50% lower levels of this kinase, fed with either a standard or a high fat diet (HFD) for 30 weeks. In these mice we studied different parameters related to cardiac growth and lipid accumulation. RESULTS: We find that GRK2+/- mice are protected from obesity-promoted cardiac and cardiomyocyte hypertrophy and fibrosis. Moreover, the marked intracellular lipid accumulation caused by a HFD in the heart is not observed in these mice. Interestingly, HFD significantly increases cardiac GRK2 levels in WT but not in GRK2+/- mice, suggesting that the beneficial phenotype observed in hemizygous animals correlates with the maintenance of GRK2 levels below a pathological threshold. Low GRK2 protein levels are able to keep the PKA/CREB pathway active and to prevent HFD-induced downregulation of key fatty acid metabolism modulators such as Peroxisome proliferator-activated receptor gamma co-activators (PGC1), thus preserving the expression of cardioprotective proteins such as mitochondrial fusion markers mitofusin MFN1 and OPA1. CONCLUSIONS: Our data further define the cellular processes and molecular mechanisms by which GRK2 down-regulation is cardioprotective during diet-induced obesity, reinforcing the protective effect of maintaining low levels of GRK2 under nutritional stress, and showing a role for this kinase in obesity-induced cardiac remodeling and steatosis.


Assuntos
Cardiomegalia/enzimologia , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Metabolismo dos Lipídeos , Miocárdio/metabolismo , Obesidade/enzimologia , Remodelação Ventricular , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/prevenção & controle , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Fibrose , Quinase 2 de Receptor Acoplado a Proteína G/deficiência , Quinase 2 de Receptor Acoplado a Proteína G/genética , GTP Fosfo-Hidrolases/metabolismo , Predisposição Genética para Doença , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Miocárdio/patologia , Obesidade/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fenótipo , Transdução de Sinais , Fatores de Tempo
15.
Mediators Inflamm ; 2015: 624287, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26063976

RESUMO

Diabetes and alcohol misuse are two of the major challenges in health systems worldwide. These two diseases finally affect several organs and systems including the central nervous system. Hippocampus is one of the most relevant structures due to neurogenesis and memory-related processing among other functions. The present review focuses on the common profile of diabetes and ethanol exposure in terms of oxidative stress and proinflammatory and prosurvival recruiting transcription factors affecting hippocampal neurogenesis. Some aspects around antioxidant strategies are also included. As a global conclusion, the present review points out some common hits on both diseases giving support to the relations between alcohol intake and diabetes.


Assuntos
Alcoolismo/metabolismo , Alcoolismo/fisiopatologia , Inflamação/fisiopatologia , Neurogênese/fisiologia , Estresse Oxidativo/fisiologia , Animais , Humanos , Inflamação/metabolismo
16.
Front Pediatr ; 12: 1397398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952433

RESUMO

Introduction: Preterm birth is a growing problem worldwide. Staying at a neonatal intensive care unit (NICU) after birth is critical for the survival of preterm infants whose feeding often requires the use of nasogastric enteral feeding tubes (NEFT). These can be colonized by hospital-associated pathobionts that can access the gut of the preterm infants through this route. Since the gut microbiota is the most impactful factor on maturation of the immune system, any disturbance in this may condition their health. Therefore, the aim of this study is to assess the impact of NEFT-associated microbial communities on the establishment of the gut microbiota in preterm infants. Material and methods: A metataxonomic analysis of fecal and NEFT-related samples obtained during the first 2 weeks of life of preterm infants was performed. The potential sharing of strains isolated from the same set of samples of bacterial species involved in NICU's outbreaks, was assessed by Random Amplification of Polymorphic DNA (RAPD) genotyping. Results: In the samples taken 48 h after birth (NEFT-1 and Me/F1), Staphylococcus spp. was the most abundant genera (62% and 14%, respectively) and it was latter displaced to 5.5% and 0.45%, respectively by Enterobacteriaceae. Significant differences in beta diversity were detected in NEFT and fecal samples taken at day 17 after birth (NEFT-3 and F3) (p = 0.003 and p = 0.024, respectively). Significant positive correlations were found between the most relevant genera detected in NEFT-3 and F3. 28% of the patients shared at least one RAPD-PCR profile in fecal and NEFT samples and 11% of the total profiles were found at least once simultaneously in NEFT and fecal samples from the same patient. Conclusion: The results indicate a parallel bacterial colonization of the gut of preterm neonates and the NEFTs used for feeding, potentially involving strain sharing between these niches. Moreover, the same bacterial RAPD profiles were found in neonates hospitalized in different boxes, suggesting a microbial transference within the NICU environment. This study may assist clinical staff in implementing best practices to mitigate the spread of pathogens that could threaten the health of preterm infants.

17.
Food Chem ; 400: 134046, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36067696

RESUMO

Psidium guajava L. and Psidium friedrichsthalianum Nied are part of the Psidium species native to America. Nowadays, it is essential to study the phenolic compound (PC) profile and their changes during digestion and the fractions available for absorption. This study aimed to characterize the PC profile in some Psidium species and their bioaccessibility (BA). Fifty-seven compounds were identified, and forty-six belonged to ten different phenolic classes. PC profiles showed significant differences between the species and the intestinal fraction P. friedrichsthalianum Nied. showed the highest PC content, although it mostly belonged to non-extractable polyphenols. This leads to the lowest BA (37%); P. guajava L. 'Morada' showed the highest (47%). Hydroxycinnamic acids were the most stable PC after gastrointestinal digestion. This study showed relevant differences in the PC content and profile of different Psidium species and changes between the PC in the original matrix and those released in the different stages of gastrointestinal digestion.


Assuntos
Psidium , Ácidos Cumáricos , Digestão , Fenóis , Extratos Vegetais
18.
Eur Respir J ; 39(1): 141-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21659414

RESUMO

The pathogenesis of idiopathic pulmonary fibrosis (IPF) is probably the result of interplay between cytokines/chemokines and growth factors. The renin-angiotensin (Ang) system is involved, although its profibrotic effect is attributed to Ang II. However, recent studies suggest that renin, through a specific receptor, is implicated in fibrogenesis. In this study, the expression of renin and renin receptor was examined in normal and IPF lungs and fibroblasts. Normal human lung fibroblasts were stimulated with renin or transfected with renin small interfering RNA (siRNA), and the expression of transforming growth factor (TGF)-ß1 and α-1-type I collagen was analysed. Normal lungs and lung fibroblasts expressed renin, which was strongly upregulated in IPF lungs and fibroblasts (∼10-fold increase; p<0.05). Immunocytochemistry showed intense renin staining in IPF fibroblasts. Renin-stimulated lung fibroblasts displayed an increase in the expression of TGF-ß1 (mean ± sd 1.8 × 10(3) ± 0.2 × 10(3) versus 1.2 × 10(3)± 0.3 × 10(3) mRNA copies per 18S ribosomal RNA; p<0.01) and collagen (5.93 × 10(2)± 0.66 × 10(2) versus 3.28 × 10(2) ± 0.5 × 10(2); p<0.01), while knocking down renin expression using siRNA provoked a strong decrease of both molecules. These effects were independent of Ang II, since neither losartan nor captopril decreased these effects. Renin also decreased matrix metalloprotease-1 expression and induced TGF-ß1 activation (163 ± 34 versus 110 ± 15 pg active TGF-ß1 per mg total protein). These findings highlight the possible role of renin as an Ang II-independent profibrotic factor in lung fibrosis.


Assuntos
Angiotensinas/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar/metabolismo , Renina/sangue , Células Cultivadas/citologia , Colágeno/metabolismo , Fibroblastos/citologia , Fibrose , Regulação da Expressão Gênica , Humanos , Metaloproteinase 2 da Matriz/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/metabolismo , Renina/biossíntese , Sistema Renina-Angiotensina , Fator de Crescimento Transformador beta1/metabolismo
19.
ACS Food Sci Technol ; 2(9): 1442-1452, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36161074

RESUMO

Reduction of waste in the food industry is critical to sustainability. This work represents one strategy of valorizing waste streams from the dairy (acid whey) and fisheries industries (fish waste) using fermentation. The main approach was to characterize the peptides produced by this fermentation under three conditions: (1) fermentation without adding inoculum; (2) with the addition of a single lactic acid bacterial strain; and (3) the addition of a consortium of lactic acid bacteria. Previous results indicated that the rapid acidification of this fermentation was advantageous for its food safety and microbial activity. This work complements our previous results by defining the rate of peptide production due to protein digestion and using two-dimensional (2D) gel electrophoresis and proteomic analysis to give a more detailed identification of the peptides produced from different waste streams. These results provide important information on this process for eventual applications in industrial fermentation and, ultimately, the efficient valorization of these waste streams.

20.
Intern Emerg Med ; 17(6): 1617-1630, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35419722

RESUMO

Previous research yielded conflicting results on the association between cigarette smoking and risk of SARS-CoV-2 infection. Since the prevalence of smoking is high globally, the study of its impact on COVID-19 pandemic may have considerable implications for public health. This study is the first to investigate the association between the SARS-CoV-2 antibody sero-positivity and biochemically verified smoking status, to refine current estimates on this association. SARS-CoV-2-specific IgG and serum cotinine levels (a well-known marker of tobacco exposure) were assessed in a large sero-epidemiological survey conducted in the town of Troina (Sicily, Italy). A propensity score matching was carried out to reduce the effect of possible factors on SARS-CoV-2 infection risk among study participants. Of the 1785 subjects included in our study, one-third was classified as current smokers, based on serum cotinine levels. The overall proportion of subjects with positive serology for SARS-CoV-2 IgG was 5.4%. The prevalence of SARS-CoV-2 antibody positivity and previous COVID-19 diagnosis were reduced in smokers. This reduced prevalence persisted after adjusting for possible confounders (such as sex, age, previous infection, chronic conditions, and risk group) at regression analyses, and the point estimates based on the PS-matched models resulted consistent with those for the unmatched population. This study found a lower proportion of positive SARS-CoV-2 serology among current smokers, using direct laboratory measures of tobacco exposure and thus avoiding possible bias associated with self-reported smoking status. Results may also serve as a reference for future clinical research on potential pharmaceutical role of nicotine or nicotinic-cholinergic agonists against COVID-19.


Assuntos
COVID-19 , Anticorpos Antivirais , COVID-19/epidemiologia , Teste para COVID-19 , Cotinina , Humanos , Imunoglobulina G , Pandemias , SARS-CoV-2 , Fumar/efeitos adversos , Fumar/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa