Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Gene ; 851: 146977, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36261087

RESUMO

Iron-refractory iron deficiency anemia (IRIDA) is considered an autosomal recessive iron deficiency anemia due to mutations in the transmembrane protease serine 6 (TMPRSS6) gene. Variations in iron parameters and a higher risk of iron deficiency have been linked to the TMPRSS6 mutations. Furthermore, human genome-wide association studies (GWAS) identified a common mutation (rs855791) linked to abnormal hematological parameters, highlighting the importance of the TMPRSS6 gene in the regulation of iron homeostasis. This is the first study to investigate TMPRSS6 gene mutation in six Saudi families of probands with iron deficiency anemia unresponsive to oral iron and partially responsive to parenteral iron administration. Each participant provided a vacutainer tube with three blood samples (2.5 ml each) and analyzed based on hematological, biochemical iron profiles, and followed by genotyping by PCR. The TMPRSS6 gene was amplified, sequenced, and analyzed in all probands and family members. Statistical analysis was done using SPSS and SHEsis software. Few functional mutations in these families were suggested (p.W73X, p.E523K and p.V736A). The proband of family 6 presented numerous hematological abnormalities upon initial consultation, including normocytic anemia accompanied by low Hb, normal MCV, low serum iron, low serum ferritin, and normal TIBC. While the p.W73X variant was only found in 2 families, the p.V736A variant was found in all examined Saudi families with IRIDA. Given the evidence outlined for these six cases, future genotype-phenotype correlation studies in a large number of IRIDA patients in Saudi Arabia may be very informative for patient management, in addition to increasing knowledge of TMPRSS6 function during development as well as factors in the regulation of TMPRSS6 and its effect on iron levels in the body.


Assuntos
Deficiências de Ferro , Serina Endopeptidases , Humanos , Serina Endopeptidases/genética , Serina , Peptídeo Hidrolases/genética , Estudo de Associação Genômica Ampla , Arábia Saudita , Proteínas de Membrana/genética , Mutação , Ferro
2.
PLoS One ; 17(10): e0274629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36194576

RESUMO

Chronic obstructive pulmonary disease (COPD) is a multifactorial progressive airflow obstruction in the lungs, accounting for high morbidity and mortality across the world. This study aims to identify potential COPD blood-based biomarkers by analyzing the dysregulated gene expression patterns in blood and lung tissues with the help of robust computational approaches. The microarray gene expression datasets from blood (136 COPD and 6 controls) and lung tissues (16 COPD and 19 controls) were analyzed to detect shared differentially expressed genes (DEGs). Then these DEGs were used to construct COPD protein network-clusters and functionally enrich them against gene ontology annotation terms. The hub genes in the COPD network clusters were then queried in GWAS catalog and in several cancer expression databases to explore their pathogenic roles in lung cancers. The comparison of blood and lung tissue datasets revealed 63 shared DEGs. Of these DEGs, 12 COPD hub gene-network clusters (SREK1, TMEM67, IRAK2, MECOM, ASB4, C1QTNF2, CDC42BPA, DPF3, DET1, CCDC74B, KHK, and DDX3Y) connected to dysregulations of protein degradation, inflammatory cytokine production, airway remodeling, and immune cell activity were prioritized with the help of protein interactome and functional enrichment analysis. Interestingly, IRAK2 and MECOM hub genes from these COPD network clusters are known for their involvement in different pulmonary diseases. Additional COPD hub genes like SREK1, TMEM67, CDC42BPA, DPF3, and ASB4 were identified as prognostic markers in lung cancer, which is reported in 1% of COPD patients. This study identified 12 gene network- clusters as potential blood based genetic biomarkers for COPD diagnosis and prognosis.


Assuntos
Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Biomarcadores , Biologia Computacional , Citocinas/metabolismo , RNA Helicases DEAD-box/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Antígenos de Histocompatibilidade Menor , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Transcriptoma
3.
Front Genet ; 13: 1066118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36468011

RESUMO

Background: Prostate cancer (PC) is a fatally aggressive urogenital cancer killing millions of men, globally. Thus, this study aims to identify key miRNAs, target genes, and drug targets associated with prostate cancer metastasis. Methods: The miRNA and mRNA expression datasets of 148 prostate tissue biopsies (39 tumours and 109 normal tissues), were analysed by differential gene expression analysis, protein interactome mapping, biological pathway analysis, miRNA-mRNA networking, drug target analysis, and survival curve analysis. Results: The dysregulated expression of 53 miRNAs and their 250 target genes involved in Hedgehog, ErbB, and cAMP signalling pathways connected to cell growth, migration, and proliferation of prostate cancer cells was detected. The subsequent miRNA-mRNA network and expression status analysis have helped us in narrowing down their number to 3 hub miRNAs (hsa-miR-455-3p, hsa-miR-548c-3p, and hsa-miR-582-5p) and 9 hub genes (NFIB, DICER1, GSK3B, DCAF7, FGFR1OP, ABHD2, NACC2, NR3C1, and FGF2). Further investigations with different systems biology methods have prioritized NR3C1, ABHD2, and GSK3B as potential genes involved in prostate cancer metastasis owing to their high mutation load and expression status. Interestingly, down regulation of NR3C1 seems to improve the prostate cancer patient survival rate beyond 150 months. The NR3C1, ABHD2, and GSK3B genes are predicted to be targeted by hsa-miR-582-5p, besides some antibodies, PROTACs and inhibitory molecules. Conclusion: This study identified key miRNAs (miR-548c-3p and miR-582-5p) and target genes (NR3C1, ABHD2, and GSK3B) as potential biomarkers for metastatic prostate cancers from large-scale gene expression data using systems biology approaches.

4.
Math Biosci Eng ; 19(3): 2310-2329, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35240786

RESUMO

Obesity and type 2 and diabetes mellitus (T2D) are two dual epidemics whose shared genetic pathological mechanisms are still far from being fully understood. Therefore, this study is aimed at discovering key genes, molecular mechanisms, and new drug targets for obesity and T2D by analyzing the genome wide gene expression data with different computational biology approaches. In this study, the RNA-sequencing data of isolated primary human adipocytes from individuals who are lean, obese, and T2D was analyzed by an integrated framework consisting of gene expression, protein interaction network (PIN), tissue specificity, and druggability approaches. Our findings show a total of 1932 unique differentially expressed genes (DEGs) across the diabetes versus obese group comparison (p≤0.05). The PIN analysis of these 1932 DEGs identified 190 high centrality network (HCN) genes, which were annotated against 3367 GO terms and functional pathways, like response to insulin signaling, phosphorylation, lipid metabolism, glucose metabolism, etc. (p≤0.05). By applying additional PIN and topological parameters to 190 HCN genes, we further mapped 25 high confidence genes, functionally connected with diabetes and obesity traits. Interestingly, ERBB2, FN1, FYN, HSPA1A, HBA1, and ITGB1 genes were found to be tractable by small chemicals, antibodies, and/or enzyme molecules. In conclusion, our study highlights the potential of computational biology methods in correlating expression data to topological parameters, functional relationships, and druggability characteristics of the candidate genes involved in complex metabolic disorders with a common etiological basis.


Assuntos
Diabetes Mellitus Tipo 2 , Redes Reguladoras de Genes , Biomarcadores/metabolismo , Biologia Computacional/métodos , Diabetes Mellitus Tipo 2/genética , Perfilação da Expressão Gênica , Humanos , Obesidade/genética , Obesidade/metabolismo , Mapas de Interação de Proteínas
5.
Front Genet ; 13: 1105173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704357

RESUMO

Endometrial cancer (EC) is a urogenital cancer affecting millions of post-menopausal women, globally. This study aims to identify key miRNAs, target genes, and drug targets associated with EC metastasis. The global miRNA and mRNA expression datasets of endometrial tissue biopsies (24 tumors +3 healthy tissues for mRNA and 18 tumor +4 healthy tissues for miRNAs), were extensively analyzed by mapping of DEGs, DEMi, biological pathway enrichment, miRNA-mRNA networking, drug target identification, and survival curve output for differentially expressed genes. Our results reveal the dysregulated expression of 26 miRNAs and their 66 target genes involved in focal adhesions, p53 signaling pathway, ECM-receptor interaction, Hedgehog signaling pathway, fat digestion and absorption, glioma as well as retinol metabolism involved in cell growth, migration, and proliferation of endometrial cancer cells. The subsequent miRNA-mRNA network and expression status analysis have narrowed down to 2 hub miRNAs (hsa-mir-200a, hsa-mir-429) and 6 hub genes (PTCH1, FOSB, PDGFRA, CCND2, ABL1, ALDH1A1). Further investigations with different systems biology methods have prioritized ALDH1A1, ABL1 and CCND2 as potential genes involved in endometrial cancer metastasis owing to their high mutation load and expression status. Interestingly, overexpression of PTCH1, ABL1 and FOSB genes are reported to be associated with a low survival rate among cancer patients. The upregulated hsa-mir-200a-b is associated with the decreased expression of the PTCH1, CCND2, PDGFRA, FOSB and ABL1 genes in endometrial cancer tissue while hsa-mir-429 is correlated with the decreased expression of the ALDH1A1 gene, besides some antibodies, PROTACs and inhibitory molecules. In conclusion, this study identified key miRNAs (hsa-mir-200a, hsa-mir-429) and target genes ALDH1A1, ABL1 and CCND2 as potential biomarkers for metastatic endometrial cancers from large-scale gene expression data using systems biology approaches.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa