Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
PLoS Genet ; 19(5): e1010734, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37126494

RESUMO

Protein degradation is an essential biological process that regulates protein abundance and removes misfolded and damaged proteins from cells. In eukaryotes, most protein degradation occurs through the stepwise actions of two functionally distinct entities, the ubiquitin system and the proteasome. Ubiquitin system enzymes attach ubiquitin to cellular proteins, targeting them for degradation. The proteasome then selectively binds and degrades ubiquitinated substrate proteins. Genetic variation in ubiquitin system genes creates heritable differences in the degradation of their substrates. However, the challenges of measuring the degradative activity of the proteasome independently of the ubiquitin system in large samples have limited our understanding of genetic influences on the proteasome. Here, using the yeast Saccharomyces cerevisiae, we built and characterized reporters that provide high-throughput, ubiquitin system-independent measurements of proteasome activity. Using single-cell measurements of proteasome activity from millions of genetically diverse yeast cells, we mapped 15 loci across the genome that influence proteasomal protein degradation. Twelve of these 15 loci exerted specific effects on the degradation of two distinct proteasome substrates, revealing a high degree of substrate-specificity in the genetics of proteasome activity. Using CRISPR-Cas9-based allelic engineering, we resolved a locus to a causal variant in the promoter of RPT6, a gene that encodes a subunit of the proteasome's 19S regulatory particle. The variant increases RPT6 expression, which we show results in increased proteasome activity. Our results reveal the complex genetic architecture of proteasome activity and suggest that genetic influences on the proteasome may be an important source of variation in the many cellular and organismal traits shaped by protein degradation.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteínas de Saccharomyces cerevisiae , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteólise , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Variação Genética
2.
Exp Dermatol ; 31(7): 1065-1075, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35243691

RESUMO

Dystrophic epidermolysis bullosa (DEB) is a skin-blistering disease caused by mutations in COL7A1, which encodes type VII collagen (C7). There is no cure for DEB, but previous work has shown potential therapeutic benefit of increased production of even partially functional C7. Genome-wide screens using CRISPR-Cas9 have enabled the identification of genes involved in cancer development, drug resistance and other genetic diseases, suggesting that they could be used to identify drivers of C7 production. A keratinocyte C7 reporter cell line was created and used in a genome-wide CRISPR activation (CRISPRa) screen to identify genes and pathways that increase C7 expression. The CRISPRa screen results were used to develop a targeted drug screen to identify compounds that upregulate C7 expression. The C7_tdTomato cell line was validated as an effective reporter for detection of C7 upregulation. The CRISPRa screen identified DENND4B and TYROBP as top gene hits plus pathways related to calcium uptake and immune signalling in C7 regulation. The targeted drug screen identified several compounds that increase C7 expression in keratinocytes, of which kaempferol, a plant flavonoid, also significantly increased C7 mRNA and protein in DEB patient cells.


Assuntos
Colágeno Tipo VII , Epidermólise Bolhosa Distrófica , Linhagem Celular , Epidermólise Bolhosa Distrófica/tratamento farmacológico , Epidermólise Bolhosa Distrófica/genética , Humanos , Queratinócitos/metabolismo , Mutação
3.
PLoS Genet ; 15(11): e1008375, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31738765

RESUMO

DNA variants that alter gene expression contribute to variation in many phenotypic traits. In particular, trans-acting variants, which are often located on different chromosomes from the genes they affect, are an important source of heritable gene expression variation. However, our knowledge about the identity and mechanism of causal trans-acting variants remains limited. Here, we developed a fine-mapping strategy called CRISPR-Swap and dissected three expression quantitative trait locus (eQTL) hotspots known to alter the expression of numerous genes in trans in the yeast Saccharomyces cerevisiae. Causal variants were identified by engineering recombinant alleles and quantifying the effects of these alleles on the expression of a green fluorescent protein-tagged gene affected by the given locus in trans. We validated the effect of each variant on the expression of multiple genes by RNA-sequencing. The three variants differed in their molecular mechanism, the type of genes they reside in, and their distribution in natural populations. While a missense leucine-to-serine variant at position 63 in the transcription factor Oaf1 (L63S) was almost exclusively present in the reference laboratory strain, the two other variants were frequent among S. cerevisiae isolates. A causal missense variant in the glucose receptor Rgt2 (V539I) occurred at a poorly conserved amino acid residue and its effect was strongly dependent on the concentration of glucose in the culture medium. A noncoding variant in the conserved fatty acid regulated (FAR) element of the OLE1 promoter influenced the expression of the fatty acid desaturase Ole1 in cis and, by modulating the level of this essential enzyme, other genes in trans. The OAF1 and OLE1 variants showed a non-additive genetic interaction, and affected cellular lipid metabolism. These results demonstrate that the molecular basis of trans-regulatory variation is diverse, highlighting the challenges in predicting which natural genetic variants affect gene expression.


Assuntos
Proteínas de Ligação a DNA/genética , Evolução Molecular , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas de Saccharomyces cerevisiae/genética , Estearoil-CoA Dessaturase/genética , Fatores de Transcrição/genética , Sistemas CRISPR-Cas/genética , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Metabolismo dos Lipídeos/genética , Proteínas de Transporte de Monossacarídeos/genética , Mutação de Sentido Incorreto/genética , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430817

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2)-induced disease (COVID-19) and Gaucher disease (GD) exhibit upregulation of complement 5a (C5a) and its C5aR1 receptor, and excess synthesis of glycosphingolipids that lead to increased infiltration and activation of innate and adaptive immune cells, resulting in massive generation of pro-inflammatory cytokines, chemokines and growth factors. This C5a-C5aR1-glycosphingolipid pathway- induced pro-inflammatory environment causes the tissue damage in COVID-19 and GD. Strikingly, pharmaceutically targeting the C5a-C5aR1 axis or the glycosphingolipid synthesis pathway led to a reduction in glycosphingolipid synthesis and innate and adaptive immune inflammation, and protection from the tissue destruction in both COVID-19 and GD. These results reveal a common involvement of the complement and glycosphingolipid systems driving immune inflammation and tissue damage in COVID-19 and GD, respectively. It is therefore expected that combined targeting of the complement and sphingolipid pathways could ameliorate the tissue destruction, organ failure, and death in patients at high-risk of developing severe cases of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Doença de Gaucher , Humanos , Doença de Gaucher/tratamento farmacológico , Esfingolipídeos , SARS-CoV-2 , Proteínas do Sistema Complemento , Complemento C5a/metabolismo , Inflamação , Glicoesfingolipídeos
5.
Nat Rev Genet ; 16(4): 197-212, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25707927

RESUMO

We are in a phase of unprecedented progress in identifying genetic loci that cause variation in traits ranging from growth and fitness in simple organisms to disease in humans. However, a mechanistic understanding of how these loci influence traits is lacking for the majority of loci. Studies of the genetics of gene expression have emerged as a key tool for linking DNA sequence variation to phenotypes. Here, we review recent insights into the molecular nature of regulatory variants and describe their influence on the transcriptome and the proteome. We discuss conceptual advances from studies in model organisms and present examples of complete chains of causality that link individual polymorphisms to changes in gene expression, which in turn result in physiological changes and, ultimately, disease risk.


Assuntos
Doença/genética , Regulação da Expressão Gênica , Polimorfismo Genético/genética , Locos de Características Quantitativas , Predisposição Genética para Doença , Humanos , Modelos Genéticos
6.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884512

RESUMO

Gaucher disease is a lysosomal storage disease, which happens due to mutations in GBA1/Gba1 that encodes the enzyme termed as lysosomal acid ß-glucosidase. The major function of this enzyme is to catalyze glucosylceramide (GC) into glucose and ceramide. The deficiency of this enzyme and resultant abnormal accumulation of GC cause altered function of several of the innate and adaptive immune cells. For example, augmented infiltration of T cells contributes to the increased production of pro-inflammatory cytokines, (e.g., IFNγ, TNFα, IL6, IL12p40, IL12p70, IL23, and IL17A/F). This leads to tissue damage in a genetic mouse model (Gba19V/-) of Gaucher disease. The cellular mechanism(s) by which increased tissue infiltration of T cells occurs in this disease is not fully understood. Here, we delineate role of the CXCR3 receptor and its exogenous C-X-C motif chemokine ligand 9 (CXCL9) in induction of increased tissue recruitment of CD4+ T and CD8+ T cells in Gaucher disease. Intracellular FACS staining of macrophages (Mϕs) and dendritic cells (DCs) from Gba19V/- mice showed elevated production of CXCL9. Purified CD4+ T cells and the CD8+ T cells from Gba19V/- mice showed increased expression of CXCR3. Ex vivo and in vivo chemotaxis experiments showed CXCL9 involvement in the recruitment of Gba19V/- T cells. Furthermore, antibody blockade of the CXCL9 receptor (CXCR3) on T cells caused marked reduction in CXCL9- mediated chemotaxis of T cells in Gba19V/- mice. These data implicate abnormalities of the CXCL9-CXCR3 axis leading to enhanced tissue recruitment of T cells in Gaucher disease. Such results provide a rationale for blockade of the CXCL9/CXCR3 axis as potential new therapeutic targets for the treatment of inflammation in Gaucher disease.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL9/metabolismo , Modelos Animais de Doenças , Doença de Gaucher/imunologia , Glucosilceramidase/fisiologia , Inflamação/imunologia , Receptores CXCR3/metabolismo , Animais , Linfócitos T CD8-Positivos/patologia , Quimiocina CXCL9/genética , Doença de Gaucher/metabolismo , Doença de Gaucher/patologia , Inflamação/metabolismo , Inflamação/patologia , Ligantes , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CXCR3/genética
7.
Nature ; 506(7489): 494-7, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24402228

RESUMO

Variation among individuals arises in part from differences in DNA sequences, but the genetic basis for variation in most traits, including common diseases, remains only partly understood. Many DNA variants influence phenotypes by altering the expression level of one or several genes. The effects of such variants can be detected as expression quantitative trait loci (eQTL). Traditional eQTL mapping requires large-scale genotype and gene expression data for each individual in the study sample, which limits sample sizes to hundreds of individuals in both humans and model organisms and reduces statistical power. Consequently, many eQTL are probably missed, especially those with smaller effects. Furthermore, most studies use messenger RNA rather than protein abundance as the measure of gene expression. Studies that have used mass-spectrometry proteomics reported unexpected differences between eQTL and protein QTL (pQTL) for the same genes, but these studies have been even more limited in scope. Here we introduce a powerful method for identifying genetic loci that influence protein expression in the yeast Saccharomyces cerevisiae. We measure single-cell protein abundance through the use of green fluorescent protein tags in very large populations of genetically variable cells, and use pooled sequencing to compare allele frequencies across the genome in thousands of individuals with high versus low protein abundance. We applied this method to 160 genes and detected many more loci per gene than previous studies. We also observed closer correspondence between loci that influence protein abundance and loci that influence mRNA abundance of a given gene. Most loci that we detected were clustered in 'hotspots' that influence multiple proteins, and some hotspots were found to influence more than half of the proteins that we examined. The variants that underlie these hotspots have profound effects on the gene regulatory network and provide insights into genetic variation in cell physiology between yeast strains.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Variação Genética/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise de Célula Única , Perfilação da Expressão Gênica , Frequência do Gene , Redes Reguladoras de Genes/genética , Genes Fúngicos/genética , Genoma Fúngico/genética , Genótipo , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Família Multigênica/genética , Proteômica , Locos de Características Quantitativas/genética , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de DNA
8.
PLoS Genet ; 11(1): e1004913, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569670

RESUMO

Signaling pathways enable cells to sense and respond to their environment. Many cellular signaling strategies are conserved from fungi to humans, yet their activity and phenotypic consequences can vary extensively among individuals within a species. A systematic assessment of the impact of naturally occurring genetic variation on signaling pathways remains to be conducted. In S. cerevisiae, both response and resistance to stressors that activate signaling pathways differ between diverse isolates. Here, we present a quantitative trait locus (QTL) mapping approach that enables us to identify genetic variants underlying such phenotypic differences across the genetic and phenotypic diversity of S. cerevisiae. Using a Round-robin cross between twelve diverse strains, we identified QTL that influence phenotypes critically dependent on MAPK signaling cascades. Genetic variants under these QTL fall within MAPK signaling networks themselves as well as other interconnected signaling pathways. Finally, we demonstrate how the mapping results from multiple strain background can be leveraged to narrow the search space of causal genetic variants.


Assuntos
Mapeamento Cromossômico , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Locos de Características Quantitativas/genética , Transdução de Sinais/genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Saccharomyces cerevisiae
9.
Nature ; 478(7369): 343-8, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22012392

RESUMO

Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped by purifying selection, we identify numerous potentially selectively driven expression switches, which occurred at different rates across lineages and tissues and which probably contributed to the specific organ biology of various mammals.


Assuntos
Evolução Molecular , Perfilação da Expressão Gênica , RNA Mensageiro/genética , Animais , Humanos , Filogenia , Análise de Componente Principal , Cromossomo X/genética
10.
PLoS Genet ; 10(10): e1004692, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340754

RESUMO

Heritable differences in gene expression between individuals are an important source of phenotypic variation. The question of how closely the effects of genetic variation on protein levels mirror those on mRNA levels remains open. Here, we addressed this question by using ribosome profiling to examine how genetic differences between two strains of the yeast S. cerevisiae affect translation. Strain differences in translation were observed for hundreds of genes. Allele specific measurements in the diploid hybrid between the two strains revealed roughly half as many cis-acting effects on translation as were observed for mRNA levels. In both the parents and the hybrid, most effects on translation were of small magnitude, such that the direction of an mRNA difference was typically reflected in a concordant footprint difference. The relative importance of cis and trans acting variation on footprint levels was similar to that for mRNA levels. There was a tendency for translation to cause larger footprint differences than expected given the respective mRNA differences. This is in contrast to translational differences between yeast species that have been reported to more often oppose than reinforce mRNA differences. Finally, we catalogued instances of premature translation termination in the two yeast strains and also found several instances where erroneous reference gene annotations lead to apparent nonsense mutations that in fact reside outside of the translated gene body. Overall, genetic influences on translation subtly modulate gene expression differences, and translation does not create strong discrepancies between genetic influences on mRNA and protein levels.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro/genética , Ribossomos/genética , Saccharomyces cerevisiae/genética , Alelos , Bases de Dados Genéticas , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Humanos , RNA Mensageiro/biossíntese , Ribossomos/metabolismo , Alinhamento de Sequência
11.
PLoS Genet ; 10(8): e1003519, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25166595

RESUMO

The analysis of introgression of genomic regions between divergent populations provides an excellent opportunity to determine the genetic basis of reproductive isolation during the early stages of speciation. However, hybridization and subsequent gene flow must be relatively common in order to localize individual loci that resist introgression. In this study, we used next-generation sequencing to study genome-wide patterns of genetic differentiation between two hybridizing subspecies of rabbits (Oryctolagus cuniculus algirus and O. c. cuniculus) that are known to undergo high rates of gene exchange. Our primary objective was to identify specific genes or genomic regions that have resisted introgression and are likely to confer reproductive barriers in natural conditions. On the basis of 326,000 polymorphisms, we found low to moderate overall levels of differentiation between subspecies, and fewer than 200 genomic regions dispersed throughout the genome showing high differentiation consistent with a signature of reduced gene flow. Most differentiated regions were smaller than 200 Kb and contained very few genes. Remarkably, 30 regions were each found to contain a single gene, facilitating the identification of candidate genes underlying reproductive isolation. This gene-level resolution yielded several insights into the genetic basis and architecture of reproductive isolation in rabbits. Regions of high differentiation were enriched on the X-chromosome and near centromeres. Genes lying within differentiated regions were often associated with transcription and epigenetic activities, including chromatin organization, regulation of transcription, and DNA binding. Overall, our results from a naturally hybridizing system share important commonalities with hybrid incompatibility genes identified using laboratory crosses in mice and flies, highlighting general mechanisms underlying the maintenance of reproductive barriers.


Assuntos
Especiação Genética , Genética Populacional , Hibridização Genética , Isolamento Reprodutivo , Animais , Centrômero , Europa (Continente) , Fluxo Gênico , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Coelhos , Cromossomo X
12.
J Neurochem ; 133(1): 153-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25319340

RESUMO

Niemann Pick type C (NPC1) is a rare fatal hereditary cholesterol storage disease associated with a massive Purkinje cells loss. The mechanisms leading to neurodegeneration are still poorly understood. Different laboratories pointed to hypersensitivity to cytotoxic effects of statins (HMG-CoA reductase inhibitors) in NPC1 and suggested an underlying lack of geranylgeranyl pyrophosphate (GGPP). GGPP is a non-sterol isoprenoid essential for cell survival and differentiation. We measured GGPP levels in cerebella of a NPC1 mouse model and of wild-type littermates and found a physiological increase of GGPP levels between post-natal days 21 and 49 in wild-type mice but not in NPC mice. This further supports the hypothesis that Purkinje cell loss may be due to an extremely low level of GGPP. The progressive Purkinje cell loss in NPC starts between p21 and p49. To test the hypothesis, we used long-term organotypic slice cultures of NPC1 mice that display the natural history of NPC1 disease in vitro and tested if chronic administration of GGPP might prevent Purkinje cell loss. We did not see a beneficial effect. This suggests, in contrast to the expectations, that the relative lack of GGPP may not significantly contribute to mechanisms of Purkinje cell loss in NPC1.


Assuntos
Sobrevivência Celular , Neurônios/patologia , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Fosfatos de Poli-Isoprenil/metabolismo , Células de Purkinje/patologia , Animais , Contagem de Células , Cerebelo/metabolismo , Cerebelo/patologia , Colesterol/sangue , Camundongos , Camundongos Endogâmicos BALB C , Técnicas de Cultura de Órgãos
13.
PLoS Genet ; 8(9): e1002962, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028369

RESUMO

Domestication has led to similar changes in morphology and behavior in several animal species, raising the question whether similarities between different domestication events also exist at the molecular level. We used mRNA sequencing to analyze genome-wide gene expression patterns in brain frontal cortex in three pairs of domesticated and wild species (dogs and wolves, pigs and wild boars, and domesticated and wild rabbits). We compared the expression differences with those between domesticated guinea pigs and a distant wild relative (Cavia aperea) as well as between two lines of rats selected for tameness or aggression towards humans. There were few gene expression differences between domesticated and wild dogs, pigs, and rabbits (30-75 genes (less than 1%) of expressed genes were differentially expressed), while guinea pigs and C. aperea differed more strongly. Almost no overlap was found between the genes with differential expression in the different domestication events. In addition, joint analyses of all domesticated and wild samples provided only suggestive evidence for the existence of a small group of genes that changed their expression in a similar fashion in different domesticated species. The most extreme of these shared expression changes include up-regulation in domesticates of SOX6 and PROM1, two modulators of brain development. There was almost no overlap between gene expression in domesticated animals and the tame and aggressive rats. However, two of the genes with the strongest expression differences between the rats (DLL3 and DHDH) were located in a genomic region associated with tameness and aggression, suggesting a role in influencing tameness. In summary, the majority of brain gene expression changes in domesticated animals are specific to the given domestication event, suggesting that the causative variants of behavioral domestication traits may likewise be different.


Assuntos
Animais Domésticos , Animais Selvagens , Encéfalo/metabolismo , Expressão Gênica , Antígeno AC133 , Animais , Animais Domésticos/genética , Animais Domésticos/metabolismo , Animais Selvagens/genética , Animais Selvagens/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Comportamento Animal , Cães , Glicoproteínas/genética , Glicoproteínas/metabolismo , Cobaias , Peptídeos/genética , Peptídeos/metabolismo , Coelhos , Ratos , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Sus scrofa , Lobos
14.
Mol Biol Evol ; 30(4): 964-76, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23329688

RESUMO

The rapid molecular evolution of reproductive genes is nearly ubiquitous across animals, yet the selective forces and functional targets underlying this divergence remain poorly understood. Humans and closely related species of great apes show strongly divergent mating systems, providing a powerful system to investigate the influence of sperm competition on the evolution of reproductive genes. This is complemented by detailed information on male reproductive biology and unparalleled genomic resources in humans. Here, we have used custom microarrays to capture and sequence 285 genes encoding proteins present in the ejaculate as well as 101 randomly selected control genes in 21 gorillas, 20 chimpanzees, 20 bonobos, and 20 humans. In total, we have generated >25× average genomic coverage per individual for over 1 million target base pairs. Our analyses indicate high levels of evolutionary constraint across much of the ejaculate combined with more rapid evolution of genes involved in immune defense and proteolysis. We do not find evidence for appreciably more positive selection along the lineage leading to bonobos and chimpanzees, although this would be predicted given more intense sperm competition in these species. Rather, the extent of positive and negative selection depended more on the effective population sizes of the species. Thus, general patterns of male reproductive protein evolution among apes and humans depend strongly on gene function but not on inferred differences in the intensity of sperm competition among extant species.


Assuntos
Hominidae/genética , Metagenômica , Proteínas de Plasma Seminal/genética , Animais , Evolução Molecular , Éxons , Feminino , Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Polimorfismo Genético , Sêmen/metabolismo , Proteínas de Plasma Seminal/metabolismo , Análise de Sequência de DNA
15.
Neuropathol Appl Neurobiol ; 40(7): 933-45, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24889722

RESUMO

AIMS: Niemann-Pick type C (NPC) disease is a fatal hereditary lysosomal lipid storage disease caused by mutations in NPC1 or NPC2. It is still unknown how this disorder evokes clinical signs. Typically, patients develop severe cerebellar ataxia due to progressive Purkinje cell loss. Hitherto, in vitro studies did not allow monitoring the natural process of NPC-associated Purkinje cell degeneration. Aim of this study was to evaluate whether organotypic slice cultures are usable to monitor the natural process of NPC-associated Purkinje-cell degeneration. METHODS: We used organotypic cerebellar slice cultures of a well-established NPC mouse model to display the natural history of cerebellar degeneration in vitro and cultivated them for a prolonged time period of 6 weeks for the first time. Moreover we tested several therapeutic candidates and evaluated their effect on Purkinje-cell survival. RESULTS: Our approach proves that it is possible to monitor and to prevent NPC-related Purkinje cell death reliably in vitro. This is beneficial because in vivo Purkinje cell loss directly translates into clinical signs. Thus, therapeutically interesting compounds can be tested in vitro, not only to correct biochemical abnormalities, but also to show the likelihood of a compound to prevent ataxia. As to be expected from the results of previous animal experiments, 2-hydroxypropyl-ß-cyclodextrin rescued Purkinje cells. We also discovered that 3-methyladenine preserved Purkinje cell numbers by adjusting the autophagic flux in NPC slices. CONCLUSION: We provide evidence that cerebellar slice cultures are a powerful in vitro tool to study NPC-associated Purkinje cell death in an organotypic setting.


Assuntos
Doenças Cerebelares/patologia , Progressão da Doença , Doença de Niemann-Pick Tipo C/complicações , Doença de Niemann-Pick Tipo C/patologia , Células de Purkinje/patologia , Técnicas de Cultura de Tecidos , Animais , Sobrevivência Celular , Doenças Cerebelares/complicações , Doenças Cerebelares/tratamento farmacológico , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes Neurológicos , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/fisiologia
16.
Clin Lab ; 60(12): 2007-13, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25651735

RESUMO

BACKGROUND: High sensitive troponin assay methods used in emergency departments and those used in hospital laboratories are needed with low imprecision of the analytical method aligned along the cut-off. METHODS: Presented is a method for adjusting the Troponin I (TnI) assay on the AQT90 FLEX analyzer (Radiometer) to the UniCel DxI 800 immunoassay system (Beckman Coulter) by correlation analysis using the Passing-Bablok method, followed by verification using receiver operating characteristic (ROC) analysis. This allows a uniform TnI cut-off to be applied to the use of different immunoassay systems in both the emergency department and in hospital laboratory settings. Finally, an imprecision profile of the TnI assay methods is applied to present a tool that allows for the discrimination of significant TnI results from imprecise measurements produced by the immunoassay system during repeated measurements. RESULTS: For TnI, the equation of the best-fit lines with which all AQT90 FLEX results can be adapted to the UniCel DxL 800 is: UniCel DxI = 4.9524 AQT90 FLEX + 0.003. The imprecision of TnI can be calculated using the mathematical relationship described by Reed et al. from the assay's coefficient of variation and the difference between the first TnI result to the second TnI result. CONCLUSIONS: It is recommended to use a slope of 4.9524 and an intercept of 0.003 to adjust the TnI values of the AQT90 FLEX to the UniCel DxI 800 assay systems. Clinically relevant, i.e., significant TnI changes (rise or fall), can be reliably interpreted by accounting for the disparate results and the imprecision profile of the TnI assay method by applying the mathematical relationship described by Reed.


Assuntos
Análise Química do Sangue/instrumentação , Doenças Cardiovasculares/diagnóstico , Imunoensaio/instrumentação , Troponina I/sangue , Área Sob a Curva , Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Desenho de Equipamento , Humanos , Valor Preditivo dos Testes , Curva ROC , Reprodutibilidade dos Testes
17.
bioRxiv ; 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38328166

RESUMO

The establishment of the gut microbiome in early life is critical for healthy infant development. Although human milk is recommended as the sole source of nutrition for the human infant, little is known about how variation in milk composition, and especially the milk microbiome, shapes the microbial communities in the infant gut. Here, we quantified the similarity between the maternal milk and the infant gut microbiome using 507 metagenomic samples collected from 195 mother-infant pairs at one, three, and six months postpartum. We found that the microbial taxonomic overlap between milk and the infant gut was driven by bifidobacteria, in particular by B. longum. Infant stool samples dominated by B. longum also showed higher temporal stability compared to samples dominated by other species. We identified two instances of strain sharing between maternal milk and the infant gut, one involving a commensal (B. longum) and one a pathobiont (K. pneumoniae). In addition, strain sharing between unrelated infants was higher among infants born at the same hospital compared to infants born in different hospitals, suggesting a potential role of the hospital environment in shaping the infant gut microbiome composition. The infant gut microbiome at one month compared to six months of age was enriched in metabolic pathways associated with de-novo molecule biosynthesis, suggesting that early colonisers might be more versatile and metabolically independent compared to later colonizers. Lastly, we found a significant overlap in antimicrobial resistance genes carriage between the mother's milk and their infant's gut microbiome. Taken together, our results suggest that the human milk microbiome has an important role in the assembly, composition, and stability of the infant gut microbiome.

18.
Physiol Genomics ; 45(9): 367-76, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23512741

RESUMO

Carnitine palmitoyl-CoA transferase-1B is a mitochondrial enzyme in the fatty acid oxidation pathway. In a previous study, CPT1B was identified as differentially expressed in the hypothalamus of two lines of chickens established by long-term selection for high (HWS) or low (LWS) body weight. Mammals have three paralogs (CPT1a, b and c) while nonmammalian vertebrates only have two (CPT1A, B). CPT1A is expressed in liver and CPT1B in muscle. CPT1c is expressed in hypothalamus, where it regulates feeding and energy expenditure. We identified an intronic length polymorphism, fixed for different alleles in the two populations, and mapped the hitherto missing CPT1B locus in the chicken genome assembly, to the distal tip of chromosome 1p. Based on molecular phylogeny and gene synteny we suggest that chicken CPT1B is pro-orthologous of the mammalian CPT1c. Chicken CPT1B was differentially expressed in both muscle and hypothalamus but in opposite directions: higher levels in hypothalamus but lower levels in muscle in the HWS than in the LWS line. Using an advanced intercross population of the lines, we found CPT1B expression to be influenced by a cis-acting expression quantitative trait locus in muscle. The increased expression in hypothalamus and reduced expression in muscle is consistent with an increased food intake in the HWS line and at the same time reduced fatty acid oxidation in muscle yielding a net accumulation of energy intake and storage. The altered expression of CPT1B in hypothalamus and peripheral tissue is likely to be a mechanism contributing to the remarkable difference between lines.


Assuntos
Peso Corporal/genética , Carnitina O-Palmitoiltransferase/genética , Galinhas/genética , Regulação Enzimológica da Expressão Gênica , Locos de Características Quantitativas/genética , Animais , Sequência de Bases , Carnitina O-Palmitoiltransferase/metabolismo , Mapeamento Cromossômico , Cromossomos/genética , Cruzamentos Genéticos , Evolução Molecular , Feminino , Genótipo , Humanos , Hipotálamo/enzimologia , Masculino , Proteínas Mitocondriais/metabolismo , Família Multigênica/genética , Músculos/enzimologia , Especificidade de Órgãos/genética , Filogenia , Polimorfismo Genético , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sintenia/genética
19.
Mol Biol Evol ; 29(7): 1837-49, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22319161

RESUMO

The nearly neutral theory of molecular evolution predicts that the efficacy of both positive and purifying selection is a function of the long-term effective population size (N(e)) of a species. Under this theory, the efficacy of natural selection should increase with N(e). Here, we tested this simple prediction by surveying ~1.5 to 1.8 Mb of protein coding sequence in the two subspecies of the European rabbit (Oryctolagus cuniculus algirus and O. c. cuniculus), a mammal species characterized by high levels of nucleotide diversity and N(e) estimates for each subspecies on the order of 1 × 10(6). When the segregation of slightly deleterious mutations and demographic effects were taken into account, we inferred that >60% of amino acid substitutions on the autosomes were driven to fixation by positive selection. Moreover, we inferred that a small fraction of new amino acid mutations (<4%) are effectively neutral (defined as 0 < N(e)s < 1) and that this fraction was negatively correlated with a gene's expression level. Consistent with models of recurrent adaptive evolution, we detected a negative correlation between levels of synonymous site polymorphism and the rate of protein evolution, although the correlation was weak and nonsignificant. No systematic X chromosome-autosome difference was found in the efficacy of selection. For example, the proportion of adaptive substitutions was significantly higher on the X chromosome compared with the autosomes in O. c. algirus but not in O. c. cuniculus. Our findings support widespread positive and purifying selection in rabbits and add to a growing list of examples suggesting that differences in N(e) among taxa play a substantial role in determining rates and patterns of protein evolution.


Assuntos
Genoma , Coelhos/genética , Seleção Genética , Substituição de Aminoácidos , Animais , Encéfalo/metabolismo , Cromossomos de Mamíferos , Feminino , Aptidão Genética , Humanos , Masculino , Camundongos , Polimorfismo Genético , Transcriptoma , Cromossomo X
20.
Horm Behav ; 64(3): 430-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23838629

RESUMO

Discussions about social behavior are generally limited to fitness effects of interactions occurring between conspecifics. However, many fitness relevant interactions take place between individuals belonging to different species. Our detailed knowledge about the role of hormones in intraspecific interactions provides a starting point to investigate how far interspecific interactions are governed by the same physiological mechanisms. Here, we carried out standardized resident-intruder (sRI) tests in the laboratory to investigate the relationship between androgens and both intra- and interspecific aggression in a year-round territorial coral reef fish, the dusky gregory, Stegastes nigricans. This damselfish species fiercely defend cultivated algal crops, used as a food source, against a broad array of species, mainly food competitors, and thus represent an ideal model system for comparisons of intra-and interspecific territorial aggression. In a first experiment, resident S. nigricans showed elevated territorial aggression against intra- and interspecific intruders, yet neither elicited a significant increase in androgen levels. However, in a second experiment where we treated residents with flutamide, an androgen receptor blocker, males but not females showed decreased aggression, both towards intra- and interspecific intruders. Thus androgens appear to affect aggression in a broader territorial context where species identity of the intruder appears to play no role. This supports the idea that the same hormonal mechanism may be relevant in intra- and interspecific interactions. We further propose that in such a case, where physiological mechanisms of behavioral responses are found to be context dependent, interspecific territorial aggression should be considered a social behavior.


Assuntos
Agressão/efeitos dos fármacos , Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios/sangue , Flutamida/farmacologia , Perciformes/fisiologia , Territorialidade , Agressão/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Reação de Fuga/efeitos dos fármacos , Feminino , Masculino , Receptores Androgênicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa