RESUMO
Tropical forests are an important part of global water and energy cycles, but the mechanisms that drive seasonality of their land-atmosphere exchanges have proven challenging to capture in models. Here, we (1) report the seasonality of fluxes of latent heat (LE), sensible heat (H), and outgoing short and longwave radiation at four diverse tropical forest sites across Amazonia-along the equator from the Caxiuanã and Tapajós National Forests in the eastern Amazon to a forest near Manaus, and from the equatorial zone to the southern forest in Reserva Jaru; (2) investigate how vegetation and climate influence these fluxes; and (3) evaluate land surface model performance by comparing simulations to observations. We found that previously identified failure of models to capture observed dry-season increases in evapotranspiration (ET) was associated with model overestimations of (1) magnitude and seasonality of Bowen ratios (relative to aseasonal observations in which sensible was only 20%-30% of the latent heat flux) indicating model exaggerated water limitation, (2) canopy emissivity and reflectance (albedo was only 10%-15% of incoming solar radiation, compared to 0.15%-0.22% simulated), and (3) vegetation temperatures (due to underestimation of dry-season ET and associated cooling). These partially compensating model-observation discrepancies (e.g., higher temperatures expected from excess Bowen ratios were partially ameliorated by brighter leaves and more interception/evaporation) significantly biased seasonal model estimates of net radiation (Rn ), the key driver of water and energy fluxes (LE ~ 0.6 Rn and H ~ 0.15 Rn ), though these biases varied among sites and models. A better representation of energy-related parameters associated with dynamic phenology (e.g., leaf optical properties, canopy interception, and skin temperature) could improve simulations and benchmarking of current vegetation-atmosphere exchange and reduce uncertainty of regional and global biogeochemical models.
Assuntos
Ecossistema , Água , Brasil , Florestas , Estações do AnoRESUMO
Understanding the pronounced seasonal and spatial variation in leaf carboxylation capacity (Vc,max ) is critical for determining terrestrial carbon cycling in tropical forests. However, an efficient and scalable approach for predicting Vc,max is still lacking. Here the ability of leaf spectroscopy for rapid estimation of Vc,max was tested. Vc,max was estimated using traditional gas exchange methods, and measured reflectance spectra and leaf age in leaves sampled from tropical forests in Panama and Brazil. These data were used to build a model to predict Vc,max from leaf spectra. The results demonstrated that leaf spectroscopy accurately predicts Vc,max of mature leaves in Panamanian tropical forests (R2 = 0.90). However, this single-age model required recalibration when applied to broader leaf demographic classes (i.e. immature leaves). Combined use of spectroscopy models for Vc,max and leaf age enabled construction of the Vc,max -age relationship solely from leaf spectra, which agreed with field observations. This suggests that the spectroscopy technique can capture the seasonal variability in Vc,max , assuming sufficient sampling across diverse species, leaf ages and canopy environments. This finding will aid development of remote sensing approaches that can be used to characterize Vc,max in moist tropical forests and enable an efficient means to parameterize and evaluate terrestrial biosphere models.
Assuntos
Ecossistema , Florestas , Modelos Biológicos , Folhas de Planta/fisiologia , Análise Espectral/métodos , Transpiração Vegetal , Estações do Ano , Especificidade da Espécie , Fatores de Tempo , Clima TropicalRESUMO
Plant phenology-the timing of cyclic or recurrent biological events in plants-offers insight into the ecology, evolution, and seasonality of plant-mediated ecosystem processes. Traditionally studied phenologies are readily apparent, such as flowering events, germination timing, and season-initiating budbreak. However, a broad range of phenologies that are fundamental to the ecology and evolution of plants, and to global biogeochemical cycles and climate change predictions, have been neglected because they are "cryptic"-that is, hidden from view (e.g., root production) or difficult to distinguish and interpret based on common measurements at typical scales of examination (e.g., leaf turnover in evergreen forests). We illustrate how capturing cryptic phenology can advance scientific understanding with two case studies: wood phenology in a deciduous forest of the northeastern USA and leaf phenology in tropical evergreen forests of Amazonia. Drawing on these case studies and other literature, we argue that conceptualizing and characterizing cryptic plant phenology is needed for understanding and accurate prediction at many scales from organisms to ecosystems. We recommend avenues of empirical and modeling research to accelerate discovery of cryptic phenological patterns, to understand their causes and consequences, and to represent these processes in terrestrial biosphere models.
Assuntos
Ecossistema , Florestas , Brasil , Mudança Climática , Estações do AnoRESUMO
Satellite and tower-based metrics of forest-scale photosynthesis generally increase with dry season progression across central Amazônia, but the underlying mechanisms lack consensus. We conducted demographic surveys of leaf age composition, and measured the age dependence of leaf physiology in broadleaf canopy trees of abundant species at a central eastern Amazon site. Using a novel leaf-to-branch scaling approach, we used these data to independently test the much-debated hypothesis - arising from satellite and tower-based observations - that leaf phenology could explain the forest-scale pattern of dry season photosynthesis. Stomatal conductance and biochemical parameters of photosynthesis were higher for recently mature leaves than for old leaves. Most branches had multiple leaf age categories simultaneously present, and the number of recently mature leaves increased as the dry season progressed because old leaves were exchanged for new leaves. These findings provide the first direct field evidence that branch-scale photosynthetic capacity increases during the dry season, with a magnitude consistent with increases in ecosystem-scale photosynthetic capacity derived from flux towers. Interactions between leaf age-dependent physiology and shifting leaf age-demographic composition are sufficient to explain the dry season photosynthetic capacity pattern at this site, and should be considered in vegetation models of tropical evergreen forests.
Assuntos
Carbono/metabolismo , Florestas , Folhas de Planta/fisiologia , Estações do Ano , Brasil , Clorofila/metabolismo , Gases/metabolismo , Fotossíntese , Estômatos de Plantas/fisiologia , Fatores de TempoRESUMO
Leaf longevity (LL) varies more than 20-fold in tropical evergreen forests, but it remains unclear how to capture these variations using predictive models. Current theories of LL that are based on carbon optimisation principles are challenging to quantitatively assess because of uncertainty across species in the 'ageing rate:' the rate at which leaf photosynthetic capacity declines with age. Here, we present a meta-analysis of 49 species across temperate and tropical biomes, demonstrating that the ageing rate of photosynthetic capacity is positively correlated with the mass-based carboxylation rate of mature leaves. We assess an improved trait-driven carbon optimality model with in situLL data for 105 species in two Panamanian forests. We show that our model explains over 40% of the cross-species variation in LL under contrasting light environment. Collectively, our results reveal how variation in LL emerges from carbon optimisation constrained by both leaf structural traits and abiotic environment.
Assuntos
Fotossíntese , Folhas de Planta , Clima Tropical , Carbono , Florestas , ÁrvoresRESUMO
Leaf age structures the phenology and development of plants, as well as the evolution of leaf traits over life histories. However, a general method for efficiently estimating leaf age across forests and canopy environments is lacking. Here, we explored the potential for a statistical model, previously developed for Peruvian sunlit leaves, to consistently predict leaf ages from leaf reflectance spectra across two contrasting forests in Peru and Brazil and across diverse canopy environments. The model performed well for independent Brazilian sunlit and shade canopy leaves (R2 = 0.75-0.78), suggesting that canopy leaves (and their associated spectra) follow constrained developmental trajectories even in contrasting forests. The model did not perform as well for mid-canopy and understory leaves (R2 = 0.27-0.29), because leaves in different environments have distinct traits and trait developmental trajectories. When we accounted for distinct environment-trait linkages - either by explicitly including traits and environments in the model, or, even better, by re-parameterizing the spectra-only model to implicitly capture distinct trait-trajectories in different environments - we achieved a more general model that well-predicted leaf age across forests and environments (R2 = 0.79). Fundamental rules, linked to leaf environments, constrain the development of leaf traits and allow for general prediction of leaf age from spectra across species, sites and canopy environments.
Assuntos
Florestas , Luz , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Característica Quantitativa Herdável , Clima Tropical , Brasil , Geografia , Modelos Teóricos , Peru , Análise de Regressão , Árvores/anatomia & histologia , Árvores/crescimento & desenvolvimentoRESUMO
Leaf quantity (i.e., canopy leaf area index, LAI), quality (i.e., per-area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here, we explored alternative options for the representation of leaf phenology effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of CO2 assimilation. We developed a two-fraction leaf (sun and shade), two-layer canopy (upper and lower) photosynthesis model to evaluate different modeling approaches and assessed three components of phenological variations (i.e., leaf quantity, quality, and within-canopy variation in leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality derived from ground-based measurements within an Amazonian evergreen forest. Modeled photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf quality and its vertical distribution within the canopy, with markedly more sensitivity to upper canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the entire year, implying that seasonal changes in LAI have little impact on total canopy light absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our two-fraction leaf, two-layer canopy model, which accounted for all three phenological components, was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal variation in eddy covariance-derived CO2 assimilation. This work identifies a parsimonious approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that utilize the FvCB model of CO2 assimilation and highlights the importance of incorporating more realistic phenological mechanisms in models that seek to improve the projection of future carbon dynamics in tropical evergreen forests.
Assuntos
Florestas , Fotossíntese , Folhas de Planta/fisiologia , Árvores/fisiologia , Brasil , Dióxido de Carbono/metabolismo , Modelos Biológicos , Estações do AnoRESUMO
To predict forest response to long-term climate change with high confidence requires that dynamic global vegetation models (DGVMs) be successfully tested against ecosystem response to short-term variations in environmental drivers, including regular seasonal patterns. Here, we used an integrated dataset from four forests in the Brasil flux network, spanning a range of dry-season intensities and lengths, to determine how well four state-of-the-art models (IBIS, ED2, JULES, and CLM3.5) simulated the seasonality of carbon exchanges in Amazonian tropical forests. We found that most DGVMs poorly represented the annual cycle of gross primary productivity (GPP), of photosynthetic capacity (Pc), and of other fluxes and pools. Models simulated consistent dry-season declines in GPP in the equatorial Amazon (Manaus K34, Santarem K67, and Caxiuanã CAX); a contrast to observed GPP increases. Model simulated dry-season GPP reductions were driven by an external environmental factor, 'soil water stress' and consequently by a constant or decreasing photosynthetic infrastructure (Pc), while observed dry-season GPP resulted from a combination of internal biological (leaf-flush and abscission and increased Pc) and environmental (incoming radiation) causes. Moreover, we found models generally overestimated observed seasonal net ecosystem exchange (NEE) and respiration (Re ) at equatorial locations. In contrast, a southern Amazon forest (Jarú RJA) exhibited dry-season declines in GPP and Re consistent with most DGVMs simulations. While water limitation was represented in models and the primary driver of seasonal photosynthesis in southern Amazonia, changes in internal biophysical processes, light-harvesting adaptations (e.g., variations in leaf area index (LAI) and increasing leaf-level assimilation rate related to leaf demography), and allocation lags between leaf and wood, dominated equatorial Amazon carbon flux dynamics and were deficient or absent from current model formulations. Correctly simulating flux seasonality at tropical forests requires a greater understanding and the incorporation of internal biophysical mechanisms in future model developments.
Assuntos
Ciclo do Carbono , Mudança Climática , Florestas , Brasil , Carbono , Ecossistema , Fotossíntese , Estações do Ano , ÁrvoresRESUMO
Eddy covariance (EC) datasets have provided insight into climate determinants of net ecosystem productivity (NEP) and evapotranspiration (ET) in natural ecosystems for decades, but most EC studies were published in serial fashion such that one study's result became the following study's hypothesis. This approach reflects the hypothetico-deductive process by focusing on previously derived hypotheses. A synthesis of this type of sequential inference reiterates subjective biases and may amplify past assumptions about the role, and relative importance, of controls over ecosystem metabolism. Long-term EC datasets facilitate an alternative approach to synthesis: the use of inductive data-based analyses to re-examine past deductive studies of the same ecosystem. Here we examined the seasonal climate determinants of NEP and ET by analyzing a 15-year EC time-series from a subalpine forest using an ensemble of Artificial Neural Networks (ANNs) at the half-day (daytime/nighttime) time-step. We extracted relative rankings of climate drivers and driver-response relationships directly from the dataset with minimal a priori assumptions. The ANN analysis revealed temperature variables as primary climate drivers of NEP and daytime ET, when all seasons are considered, consistent with the assembly of past studies. New relations uncovered by the ANN approach include the role of soil moisture in driving daytime NEP during the snowmelt period, the nonlinear response of NEP to temperature across seasons, and the low relevance of summer rainfall for NEP or ET at the same daytime/nighttime time step. These new results offer a more complete perspective of climate-ecosystem interactions at this site than traditional deductive analyses alone.
Assuntos
Clima , Dióxido de Carbono/metabolismo , Ecossistema , Florestas , Estações do Ano , Árvores/metabolismoRESUMO
For decades, the dynamic nature of chlorophyll a fluorescence (ChlaF) has provided insight into the biophysics and ecophysiology of the light reactions of photosynthesis from the subcellular to leaf scales. Recent advances in remote sensing methods enable detection of ChlaF induced by sunlight across a range of larger scales, from using instruments mounted on towers above plant canopies to Earth-orbiting satellites. This signal is referred to as solar-induced fluorescence (SIF) and its application promises to overcome spatial constraints on studies of photosynthesis, opening new research directions and opportunities in ecology, ecophysiology, biogeochemistry, agriculture and forestry. However, to unleash the full potential of SIF, intensive cross-disciplinary work is required to harmonize these new advances with the rich history of biophysical and ecophysiological studies of ChlaF, fostering the development of next-generation plant physiological and Earth-system models. Here, we introduce the scale-dependent link between SIF and photosynthesis, with an emphasis on seven remaining scientific challenges, and present a roadmap to facilitate future collaborative research towards new applications of SIF.
Assuntos
Clorofila A/fisiologia , Ciências da Terra , Fluorescência , Biologia Molecular , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Tecnologia de Sensoriamento Remoto/métodosRESUMO
In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.
Assuntos
Mudança Climática , Florestas , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Clima Tropical , Demografia , Luz , Estações do AnoRESUMO
We briefly introduce R2G2, an R CRAN package to visualize spatially explicit biological data within the Google Earth interface. Our package combines a collection of basic graph-editing features, including automated placement of dots, segments, polygons, images (including graphs produced with R), along with several complex three-dimensional (3D) representations such as phylogenies, histograms and pie charts. We briefly present some example data sets and show the immediate benefits in communication gained from using the Google Earth interface to visually explore biological results. The package is distributed with detailed help pages providing examples and annotated source scripts with the hope that users will have an easy time using and further developing this package. R2G2 is distributed on http://cran.r-project.org/web/packages.