Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuron ; 55(6): 859-73, 2007 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-17880891

RESUMO

NF-kappaB signaling has been implicated in neurodegenerative disease, epilepsy, and neuronal plasticity. However, the cellular and molecular activity of NF-kappaB signaling within the nervous system remains to be clearly defined. Here, we show that the NF-kappaB and IkappaB homologs Dorsal and Cactus surround postsynaptic glutamate receptor (GluR) clusters at the Drosophila NMJ. We then show that mutations in dorsal, cactus, and IRAK/pelle kinase specifically impair GluR levels, assayed immunohistochemically and electrophysiologically, without affecting NMJ growth, the size of the postsynaptic density, or homeostatic plasticity. Additional genetic experiments support the conclusion that cactus functions in concert with, rather than in opposition to, dorsal and pelle in this process. Finally, we provide evidence that Dorsal and Cactus act posttranscriptionally, outside the nucleus, to control GluR density. Based upon our data we speculate that Dorsal, Cactus, and Pelle could function together, locally at the postsynaptic density, to specify GluR levels.


Assuntos
Proteínas I-kappa B/fisiologia , Quinases Associadas a Receptores de Interleucina-1/fisiologia , NF-kappa B/fisiologia , Junção Neuromuscular/metabolismo , Receptores de Glutamato/metabolismo , Alelos , Animais , Western Blotting , Citoplasma/metabolismo , Drosophila , Eletrofisiologia , Proteínas I-kappa B/genética , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Quinases Associadas a Receptores de Interleucina-1/genética , Membranas/metabolismo , Microscopia Eletrônica , Músculos/inervação , Músculos/fisiologia , Mutação/fisiologia , NF-kappa B/genética , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Receptores de Glutamato/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinapses/genética , Sinapses/fisiologia
2.
Neuron ; 51(3): 291-302, 2006 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-16880124

RESUMO

Early in C. elegans development, signaling between bilaterally symmetric AWC olfactory neurons causes them to express different odorant receptor genes. AWC left-right asymmetry is stochastic: in each animal, either the left or the right neuron randomly becomes AWC(ON), and the other neuron becomes AWC(OFF). Here we show that the nsy-4 gene coordinates the lateral signaling that diversifies AWC(ON) and AWC(OFF) neurons. nsy-4 mutants generate 2 AWC(OFF) neurons, as expected if communication between the AWC neurons is lost, whereas overexpression of nsy-4 results in 2 AWC(ON) neurons. nsy-4 encodes a transmembrane protein related to the gamma subunits of voltage-activated calcium channels and the claudin superfamily; it interacts genetically with calcium channels and antagonizes a calcium-to-MAP kinase cascade in the neuron that becomes AWC(ON). Genetic mosaic analysis indicates that nsy-4 functions both cell-autonomously and nonautonomously in signaling between AWC neurons, providing evidence for lateral signaling and feedback that coordinate asymmetric receptor choice.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Proteínas de Membrana/fisiologia , Família Multigênica , Neurônios Receptores Olfatórios/crescimento & desenvolvimento , Transdução de Sinais/fisiologia , Junções Íntimas/fisiologia , Transgenes/fisiologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Claudina-1 , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Transdução de Sinais/genética , Junções Íntimas/genética
3.
J Neurosci ; 24(31): 6871-9, 2004 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-15295021

RESUMO

Here, we show that postsynaptic p21-activated kinase (Pak) signaling diverges into two genetically separable pathways at the Drosophila neuromuscular junction. One pathway controls glutamate receptor abundance. Pak signaling within this pathway is specified by a required interaction with the adaptor protein Dreadlocks (Dock). We demonstrate that Dock is localized to the synapse via an Src homology 2-mediated protein interaction. Dock is not necessary for Pak localization but is necessary to restrict Pak signaling to control glutamate receptor abundance. A second genetically separable function of Pak kinase signaling controls muscle membrane specialization through the regulation of synaptic Discs-large. In this pathway, Dock is dispensable. We present a model in which divergent Pak signaling is able to coordinate two different features of postsynaptic maturation, receptor abundance, and muscle membrane specialization.


Assuntos
Proteínas de Drosophila/fisiologia , Junção Neuromuscular/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Receptores de Glutamato/fisiologia , Sinapses/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Drosophila , GTP Fosfo-Hidrolases/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Transmissão Sináptica/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Quinases Ativadas por p21
4.
Curr Biol ; 25(18): 2435-40, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26344091

RESUMO

Hunger is a complex motivational state that drives multiple behaviors. The sensation of hunger is caused by an imbalance between energy intake and expenditure. One immediate response to hunger is increased food consumption. Hunger also modulates behaviors related to food seeking such as increased locomotion and enhanced sensory sensitivity in both insects and vertebrates. In addition, hunger can promote the expression of food-associated memory. Although progress is being made, how hunger is represented in the brain and how it coordinates these behavioral responses is not fully understood in any system. Here, we use Drosophila melanogaster to identify neurons encoding hunger. We found a small group of neurons that, when activated, induced a fed fly to eat as though it were starved, suggesting that these neurons are downstream of the metabolic regulation of hunger. Artificially activating these neurons also promotes appetitive memory performance in sated flies, indicating that these neurons are not simply feeding command neurons but likely play a more general role in encoding hunger. We determined that the neurons relevant for the feeding effect are serotonergic and project broadly within the brain, suggesting a possible mechanism for how various responses to hunger are coordinated. These findings extend our understanding of the neural circuitry that drives feeding and enable future exploration of how state influences neural activity within this circuit.


Assuntos
Drosophila melanogaster/fisiologia , Fome , Animais , Proteínas de Drosophila/metabolismo , Comportamento Alimentar , Feminino , Privação de Alimentos , Canais Iônicos , Masculino , Memória , Motivação , Neurônios Serotoninérgicos/fisiologia , Canal de Cátion TRPA1 , Canais de Cátion TRPC/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa