Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Microbiol ; 118(6): 637-651, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36151601

RESUMO

The twin-arginine protein translocation (Tat) system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of chloroplasts. The Tat translocation site is transiently assembled by the recruitment of multiple TatA proteins to a substrate-activated TatBC receptor complex in a process requiring the protonmotive force. The ephemeral nature of the Tat translocation site has so far precluded its isolation. We now report that detergent solubilization of membranes during active transport allows the recovery of receptor complexes that are associated with elevated levels of TatA. We apply this biochemical analysis in combination with live cell fluorescence imaging to Tat systems trapped in the assembled state. We resolve sub-steps in the Tat translocation cycle and infer that TatA assembly precedes the functional interaction of TatA with a polar cluster site on TatC. We observe that dissipation of the protonmotive force releases TatA oligomers from the assembled translocation site demonstrating that the stability of the TatA oligomer does not depend on binding to the receptor complex and implying that the TatA oligomer is assembled at the periphery of the receptor complex. This work provides new insight into the Tat transport cycle and advances efforts to isolate the active Tat translocon.


Assuntos
Proteínas de Escherichia coli , Humanos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ligação Proteica , Transporte Proteico/fisiologia , Translocação Genética
2.
Microbiology (Reading) ; 169(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38116759

RESUMO

Successful occupancy of a given niche requires the colonising bacteria to interact extensively with the biotic and abiotic environment, including other resident microbes. Bacteria have evolved a range of protein secretion machines for this purpose with eleven such systems identified to date. The type VIIb secretion system (T7SSb) is utilised by Bacillota to secrete a range of protein substrates, including antibacterial toxins targeting closely related strains, and the system as a whole has been implicated in a range of activities such as iron acquisition, intercellular signalling, host colonisation and virulence. This review covers the components and secretion mechanism of the T7SSb, the substrates of these systems and their roles in Gram-positive bacteria, with a focus on interbacterial competition.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Tipo VI , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bactérias/genética , Bactérias/metabolismo , Virulência , Bactérias Gram-Positivas , Transdução de Sinais , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo
3.
Proc Natl Acad Sci U S A ; 114(10): E1958-E1967, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223511

RESUMO

The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA-YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase.


Assuntos
Arginina/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/química , Sinais Direcionadores de Proteínas , Sequência de Aminoácidos , Substituição de Aminoácidos , Arginina/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Especificidade por Substrato
4.
Mol Microbiol ; 109(5): 584-599, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29873128

RESUMO

Members of the Omp85 protein superfamily have important roles in Gram-negative bacteria, with the archetypal protein BamA being ubiquitous given its essential function in the assembly of outer membrane proteins. In some bacterial lineages, additional members of the family exist and, in most of these cases, the function of the protein is unknown. We detected one of these Omp85 proteins in the pathogen Klebsiella pneumoniae B5055, and refer to the protein as BamK. Here, we show that bamK is a conserved element in the core genome of Klebsiella, and its expression rescues a loss-of-function ∆bamA mutant. We developed an E. coli model system to measure and compare the specific activity of BamA and BamK in the assembly reaction for the critical substrate LptD, and find that BamK is as efficient as BamA in assembling the native LptDE complex. Comparative structural analysis revealed that the major distinction between BamK and BamA is in the external facing surface of the protein, and we discuss how such changes may contribute to a mechanism for resistance against infection by bacteriophage.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli/patogenicidade , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/patogenicidade , Animais , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano/genética , Klebsiella pneumoniae/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C
6.
BMC Biol ; 16(1): 141, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30466434

RESUMO

BACKGROUND: Bacteria and mitochondria contain translocases that function to transport proteins across or insert proteins into their inner and outer membranes. Extant mitochondria retain some bacterial-derived translocases but have lost others. While BamA and YidC were integrated into general mitochondrial protein transport pathways (as Sam50 and Oxa1), the inner membrane TAT translocase, which uniquely transports folded proteins across the membrane, was retained sporadically across the eukaryote tree. RESULTS: We have identified mitochondrial TAT machinery in diverse eukaryotic lineages and define three different types of eukaryote-encoded TatABC-derived machineries (TatAC, TatBC and TatC-only). Here, we investigate TatAC and TatC-only machineries, which have not been studied previously. We show that mitochondria-encoded TatAC of the jakobid Andalucia godoyi represent the minimal functional pathway capable of substituting for the Escherichia coli TatABC complex and can transport at least one substrate. However, selected TatC-only machineries, from multiple eukaryotic lineages, were not capable of supporting the translocation of this substrate across the bacterial membrane. Despite the multiple losses of the TatC gene from the mitochondrial genome, the gene was never transferred to the cell nucleus. Although the major constraint preventing nuclear transfer of mitochondrial TatC is likely its high hydrophobicity, we show that in chloroplasts, such transfer of TatC was made possible due to modifications of the first transmembrane domain. CONCLUSIONS: At its origin, mitochondria inherited three inner membrane translocases Sec, TAT and Oxa1 (YidC) from its bacterial ancestor. Our work shows for the first time that mitochondrial TAT has likely retained its unique function of transporting folded proteins at least in those few eukaryotes with TatA and TatC subunits encoded in the mitochondrial genome. However, mitochondria, in contrast to chloroplasts, abandoned the machinery multiple times in evolution. The overall lower hydrophobicity of the Oxa1 protein was likely the main reason why this translocase was nearly universally retained in mitochondrial biogenesis pathways.


Assuntos
Eucariotos/genética , Evolução Molecular , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mitocôndrias/metabolismo , Transporte Proteico
7.
Mol Microbiol ; 98(1): 111-29, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26112072

RESUMO

The Tat protein export system translocates folded proteins across the bacterial cytoplasmic membrane and the plant thylakoid membrane. The Tat system in Escherichia coli is composed of TatA, TatB and TatC proteins. TatB and TatC form an oligomeric, multivalent receptor complex that binds Tat substrates, while multiple protomers of TatA assemble at substrate-bound TatBC receptors to facilitate substrate transport. We have addressed whether oligomerisation of TatC is an absolute requirement for operation of the Tat pathway by screening for dominant negative alleles of tatC that inactivate Tat function in the presence of wild-type tatC. Single substitutions that confer dominant negative TatC activity were localised to the periplasmic cap region. The variant TatC proteins retained the ability to interact with TatB and with a Tat substrate but were unable to support the in vivo assembly of TatA complexes. Blue-native PAGE analysis showed that the variant TatC proteins produced smaller TatBC complexes than the wild-type TatC protein. The substitutions did not alter disulphide crosslinking to neighbouring TatC molecules from positions in the periplasmic cap but abolished a substrate-induced disulphide crosslink in transmembrane helix 5 of TatC. Our findings show that TatC functions as an obligate oligomer.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Sequência de Aminoácidos , Arginina , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Mutação , Periplasma/metabolismo , Fenótipo , Ligação Proteica , Subunidades Proteicas , Transporte Proteico
8.
Proc Natl Acad Sci U S A ; 110(38): E3650-9, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003141

RESUMO

The twin-arginine translocation (Tat) machinery transports folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. It has been inferred that the Tat translocation site is assembled on demand by substrate-induced association of the protein TatA. We tested this model by imaging YFP-tagged TatA expressed at native levels in living Escherichia coli cells in the presence of low levels of the TatA paralogue TatE. Under these conditions the TatA-YFP fusion supports full physiological Tat transport activity. In agreement with the TatA association model, raising the number of transport-competent substrate proteins within the cell leads to an increase in the number of large TatA complexes present. Formation of these complexes requires both a functional TatBC substrate receptor and the transmembrane proton motive force (PMF). Removing the PMF causes TatA complexes to dissociate, except in strains with impaired Tat transport activity. Based on these observations we propose that TatA assembly reaches a critical point at which oligomerization can be reversed only by substrate transport. In contrast to TatA-YFP, the oligomeric states of TatB-YFP and TatC-YFP fusions are not affected by substrate or the PMF, although TatB-YFP oligomerization does require TatC.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Bactérias , Escherichia coli/metabolismo , Proteínas Luminescentes , Microscopia de Fluorescência , Transporte Proteico/fisiologia , Força Próton-Motriz/fisiologia
9.
Nat Microbiol ; 9(4): 1089-1102, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538833

RESUMO

Secretion systems are protein export machines that enable bacteria to exploit their environment through the release of protein effectors. The Type 9 Secretion System (T9SS) is responsible for protein export across the outer membrane (OM) of bacteria of the phylum Bacteroidota. Here we trap the T9SS of Flavobacterium johnsoniae in the process of substrate transport by disrupting the T9SS motor complex. Cryo-EM analysis of purified substrate-bound T9SS translocons reveals an extended translocon structure in which the previously described translocon core is augmented by a periplasmic structure incorporating the proteins SprE, PorD and a homologue of the canonical periplasmic chaperone Skp. Substrate proteins bind to the extracellular loops of a carrier protein within the translocon pore. As transport intermediates accumulate on the translocon when energetic input is removed, we deduce that release of the substrate-carrier protein complex from the translocon is the energy-requiring step in T9SS transport.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Bacterianos , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/química , Transporte Proteico , Proteínas de Transporte/metabolismo
10.
Mol Biol Evol ; 29(1): 113-22, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21984067

RESUMO

The apicomplexan parasite Cryptosporidium parvum possesses a mitosome, a relict mitochondrion with a greatly reduced metabolic capability. This mitosome houses a mitochondrial-type protein import apparatus, but elements of the protein import pathway have been reduced, and even lost, through evolution. The small Tim protein family is a case in point. The genomes of C. parvum and related species of Cryptosporidium each encode just one small Tim protein, CpTimS. This observation challenged the tenet that small Tim proteins are always found in pairs as α3ß3 hexamers. We show that the atypical CpTimS exists as a relatively unstable homohexamer, shedding light both on the early evolution of the small Tim protein family and on small Tim hexamer formation in contemporary eukaryotes.


Assuntos
Proteínas de Transporte/química , Cryptosporidium/genética , Mitocôndrias/genética , Chaperonas Moleculares/química , Sequência de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cryptosporidium/química , Evolução Molecular , Mitocôndrias/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas , Alinhamento de Sequência
11.
bioRxiv ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37461441

RESUMO

The type VIIb protein secretion system (T7SSb) plays a role in interbacterial competition in Gram-positive Firmicute bacteria and secretes various toxic effector proteins. The mechanism of secretion and the roles of numerous conserved genes within T7SSb gene clusters remain unknown. EsaD is a nuclease toxin secreted by the Staphylococcus aureus T7SSb, which forms a complex with its cognate immunity protein, EsaG, and chaperone EsaE. Encoded upstream of EsaD are three small secreted proteins, EsxB, EsxC and EsxD. Here we show that EsxBCD bind to the transport domain of EsaD and function as EsaD export factors. We report the first structural information for a complete T7SSb substrate pre-secretion complex. Cryo-EM of the EsaDEG trimer and the EsaDEG-EsxBCD hexamer shows that incorporation of EsxBCD confers a conformation comprising a flexible globular cargo domain attached to a long narrow shaft that is likely to be crucial for efficient toxin export.

12.
mBio ; 14(5): e0210023, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37815362

RESUMO

IMPORTANCE: Staphylococcus aureus is an opportunistic human pathogen associated with severe infections and antimicrobial resistance. S. aureus strains utilize a type VII secretion system to secrete toxins targeting competitor bacteria, likely facilitating colonization. EsaD is a nuclease toxin secreted by the type VII secretion system in many strains of S. aureus as well as other related bacterial species. Here, we identify three small proteins of previously unknown function as export factors, required for efficient secretion of EsaD. We show that these proteins bind to the transport domain of EsaD, forming a complex with a striking cane-like conformation.


Assuntos
Toxinas Biológicas , Sistemas de Secreção Tipo VII , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo VII/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Regulação Bacteriana da Expressão Gênica , Toxinas Biológicas/metabolismo
13.
Biochim Biophys Acta ; 1808(3): 947-54, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20659421

RESUMO

Bacterial endosymbionts gave rise to mitochondria in a process that depended on the acquisition of protein import pathways. Modification and in some cases major re-tooling of the endosymbiont's cellular machinery produced these pathways, establishing mitochondria as organelles common to all eukaryotic cells. The legacy of this evolutionary tinkering can be seen in the homologies and structural similarities between mitochondrial protein import machinery and modern day bacterial proteins. Comparative analysis of these systems is revealing both possible routes for the evolution of the mitochondrial membrane translocases and a greater understanding of the mechanisms behind mitochondrial protein import. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.


Assuntos
Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Evolução Molecular , Humanos , Transporte Proteico
14.
Nat Microbiol ; 6(2): 221-233, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432152

RESUMO

Three classes of ion-driven protein motors have been identified to date: ATP synthase, the bacterial flagellar motor and a proton-driven motor that powers gliding motility and the type 9 protein secretion system in Bacteroidetes bacteria. Here, we present cryo-electron microscopy structures of the gliding motility/type 9 protein secretion system motors GldLM from Flavobacterium johnsoniae and PorLM from Porphyromonas gingivalis. The motor is an asymmetric inner membrane protein complex in which the single transmembrane helices of two periplasm-spanning GldM/PorM proteins are positioned inside a ring of five GldL/PorL proteins. Mutagenesis and single-molecule tracking identify protonatable amino acid residues in the transmembrane domain of the complex that are important for motor function. Our data provide evidence for a mechanism in which proton flow results in rotation of the periplasm-spanning GldM/PorM dimer inside the intra-membrane GldL/PorL ring to drive processes at the bacterial outer membrane.


Assuntos
Proteínas de Bactérias/química , Sistemas de Secreção Bacterianos/química , Flavobacterium/fisiologia , Porphyromonas gingivalis/fisiologia , Microscopia Crioeletrônica , Flavobacterium/metabolismo , Movimento , Periplasma/metabolismo , Porphyromonas gingivalis/metabolismo , Domínios Proteicos , Multimerização Proteica , Prótons , Imagem Individual de Molécula
15.
Nat Microbiol ; 5(2): 256-264, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31959970

RESUMO

Despite the sporadic detection of fluoroquinolone-resistant Shigella in Asia in the early 2000s and the subsequent global spread of ciprofloxacin-resistant (cipR) Shigella sonnei from 2010, fluoroquinolones remain the recommended therapy for shigellosis1-7. The potential for cipR S. sonnei to develop resistance to alternative second-line drugs may further limit future treatment options8. Here, we aim to understand the evolution of novel antimicrobial resistant (AMR) S. sonnei variants after introduction into Vietnam. We found that cipR S. sonnei displaced the resident ciprofloxacin-susceptible (cipS) lineage while rapidly acquiring additional resistance to multiple alternative antimicrobial classes. We identified several independent acquisitions of extensively drug-resistant/multidrug-resistant-inducing plasmids, probably facilitated by horizontal transfer from commensals in the human gut. By characterizing commensal Escherichia coli from Shigella-infected and healthy children, we identified an extensive array of AMR genes and plasmids, including an identical multidrug-resistant plasmid isolated from both S. sonnei and E. coli in the gut of a single child. We additionally found that antimicrobial usage may impact plasmid transfer between commensal E. coli and S. sonnei. These results suggest that, in a setting with high antimicrobial use and a high prevalence of AMR commensals, cipR S. sonnei may be propelled towards pan-resistance by adherence to outdated international treatment guidelines.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Fluoroquinolonas/farmacologia , Fatores R/genética , Shigella sonnei/efeitos dos fármacos , Shigella sonnei/genética , Criança , Ciprofloxacina/farmacologia , Sistema Digestório/microbiologia , Reservatórios de Doenças/microbiologia , Disenteria Bacilar/tratamento farmacológico , Disenteria Bacilar/epidemiologia , Disenteria Bacilar/microbiologia , Epidemias , Escherichia coli/isolamento & purificação , Genes Bacterianos , Humanos , Filogenia , Shigella sonnei/classificação , Simbiose/genética , Vietnã/epidemiologia
16.
IUBMB Life ; 61(9): 909-14, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19585663

RESUMO

Mitochondria possess a dedicated-chaperone system in the intermembrane space, the small Tims that are ubiquitous in all eukaryotes from yeast to man. They escort membrane proteins to the outer or the inner membrane for proper insertion. These mitochondrial chaperones do not require external energy to perform their function and have structural similarities to other ATP-independent chaperones. Here, we discuss their structural properties and how these relate to their chaperoning function in the mitochondrial intermembrane space.


Assuntos
Trifosfato de Adenosina/fisiologia , Mitocôndrias/fisiologia , Chaperonas Moleculares/fisiologia , Animais , Humanos , Proteínas de Membrana/biossíntese , Chaperonas Moleculares/química , Conformação Proteica , Saccharomyces cerevisiae/fisiologia
17.
Biochem J ; 409(2): 377-87, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17894549

RESUMO

Mitochondria were derived from intracellular bacteria and the mitochondrial intermembrane space is topologically equivalent to the bacterial periplasm. Both compartments contain ATP-independent chaperones involved in the transport of hydrophobic membrane proteins. The mitochondrial TIM (translocase of the mitochondrial inner membrane) 10 complex and the periplasmic chaperone SurA were examined in terms of evolutionary relation, structural similarity, substrate binding specificity and their function in transporting polypeptides for insertion into membranes. The two chaperones are evolutionarily unrelated; structurally, they are also distinct both in their characteristics, as determined by SAXS (small-angle X-ray scattering), and in pairwise structural comparison using the distance matrix alignment (DALILite server). Despite their structural differences, SurA and the TIM10 complex share a common binding specificity in Pepscan assays of substrate proteins. Comprehensive analysis of the binding on a total of 1407 immobilized 13-mer peptides revealed that the TIM10 complex, like SurA, does not bind hydrophobic peptides generally, but that both chaperones display selectivity for peptides rich in aromatic residues and with net positive charge. This common binding specificity was not sufficient for SurA to completely replace TIM10 in yeast cells in vivo. In yeast cells lacking TIM10, when SurA is targeted to the intermembrane space of mitochondria, it binds translocating substrate proteins, but fails to completely transfer the substrate to the translocase in the mitochondrial inner membrane. We suggest that SurA was incapable of presenting substrates effectively to the primitive TOM (translocase of the mitochondrial outer membrane) and TIM complexes in early mitochondria, and was replaced by the more effective small Tim chaperone.


Assuntos
Proteínas de Bactérias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Biblioteca de Peptídeos , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Transporte Proteico , Relação Estrutura-Atividade , Especificidade por Substrato
18.
J Mol Biol ; 371(5): 1315-24, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17618651

RESUMO

The Saccharomyces cerevisiae TIM10 complex (TIM10c) is an ATP-independent chaperone of the mitochondrial intermembrane space, involved in transport of polytopic membrane proteins. The complex is an alpha(3)beta(3) hexamer of Tim9 and Tim10 subunits. We have generated specific mutations in charged residues in the central core domain of each subunit delineated by the characteristic twin CX(3)C motif, and investigated the effect of these mutations on subunit folding, complex assembly and TIM10 function in vitro and in vivo. Any combination of mutations that included a specific glutamate residue, conserved in all known Tim9 and Tim10 sequences, abolished assembly of the TIM10 complex. In vivo complementation analyses using a MET3-TIM10 strain that is selectively inactivated for the expression of wild-type Tim10 showed that (i) an N-terminal deleted version of Tim10 that was previously shown to be defective in substrate binding is lethal under all conditions, but (ii) the charged residues mutant of Tim10 that is defective in assembly with Tim9 can restore growth in glucose, but not in non-fermentable carbon sources. These data suggest that formation of the hexamer is beneficial but not vital for TIM10 function, whilst the N-terminal substrate-binding region of Tim10 is essential in vivo.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Teste de Complementação Genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Transporte Proteico , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
19.
Elife ; 62017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28857741

RESUMO

The twin-arginine translocase (Tat) transports folded proteins across the bacterial cytoplasmic membrane and the plant thylakoid membrane. The Tat translocation site is formed by substrate-triggered oligomerization of the protein TatA. Walther and co-workers have proposed a structural model for the TatA oligomer in which TatA monomers self-assemble using electrostatic 'charge zippers' (Cell (2013) 132: 15945). This model was supported by in vitro analysis of the oligomeric state of TatA variants containing charge-inverting substitutions. Here we have used live cell assays of TatA assembly and function in Escherichia coli to re-assess the roles of the charged residues of TatA. Our results do not support the charge zipper model. Instead, we observe that substitutions of charged residues located in the TatA amphipathic helix lock TatA in an assembled state, suggesting that these charged residues play a critical role in the protein translocation step that follows TatA assembly.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Multimerização Proteica , Substituição de Aminoácidos , Análise Mutacional de DNA , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Modelos Biológicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo
20.
J Mol Biol ; 351(4): 839-49, 2005 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-16039669

RESUMO

Tim9 and Tim10 belong to the small Tim family of mitochondrial ATP-independent chaperones. They are organised in a specific hetero-oligomeric complex (TIM10) that escorts polytopic proteins into the mitochondrial inner membrane. The contributions of the individual subunits to the assembly and function of the TIM10 complex remain poorly understood. Here, we show that substrate recognition and assembly of the complex are mediated by distinct domains of the subunits. These are unrelated to the characteristic "twin CX3C" motif that is present in all small Tims and ensures proper folding of the unassembled subunits. Specifically, we show that substrate recognition is achieved by the Tim10 subunit, whilst Tim9 serves a more structural role. The N-terminal domain of Tim10 is a substrate sensor whilst its C-terminal part is essential for complex formation. By contrast, both N and C-terminal domains of Tim9 are involved in the stability of the complex.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana Transportadoras/química , Proteínas Mitocondriais/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Bases , DNA Fúngico/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Subunidades Proteicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa